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Preface
SECOND EDITION

Common Lisp has succeeded. Since publication of the first edition of this
book in 1984, many implementors have used it as a de facto standard for Lisp
implementation. As a result, it is now much easier to port large Lisp programs
from one implementation to another. Common Lisp has proved to be a useful
and stable platform for rapid prototyping and systems delivery in artificial
intelligence and other areas. With experience gained in using Common Lisp
for so many applications, implementors found no shortage of opportunities for
innovation. One of the important characteristics of Lisp is its good support for
experimental extension of the language; while Common Lisp has been stable,
it has not stagnated.

The 1984 definition of Common Lisp was imperfect and incomplete. In some
cases this was inadvertent: some odd boundary situation was overlooked and
its consequences not specified, or different passages were in conflict, or some
property of Lisp was so well-known and traditionally relied upon that I forgot
to write it down. In other cases the informal committee that was defining
Common Lisp could not settle on a solution, and therefore agreed to leave
some important aspect of the language unspecified rather than choose a less
than satisfactory definition. An example is error handling; 1984 Common
Lisp had plenty of ways to signal errors but no way for a program to trap or
process them.

Over the next year I collected reports of errors in the book and gaps in
the language. In December 1985, a group of implementors and users met in
Boston to discuss the state of Common Lisp. I prepared two lists for this
meeting, one of errata and clarifications that I thought would be relatively
uncontroversial (boy, was I wrong!) and one of more substantial changes I
thought should be considered and perhaps voted upon. Others also brought
proposals to discuss. It became clear to everyone that there was now enough
interest in Common Lisp, and dependence on its stability, that a more formal
mechanism was needed for managing changes to the language.

xiii
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This realization led to the formation of X3J13, a subcommittee of ANSI
committee X3, to produce a formal American National Standard for Common
Lisp. That process is nearing completion. X3J13 has completed the bulk of
its technical work in rectifying the 1984 definition and codifying extensions
to that definition that have received widespread use and approval. A draft
standard is now being prepared; it will probably be available in 1990. There
will then be a period (required by ANSI) for public review. X3J13 must then
consider the comments it receives and respond appropriately. If the comments
result in substantial changes to the draft standard, multiple public review
periods may be required before the draft can be approved as an American
National Standard.

Fortunately, X3J13 has done an outstanding job of documenting its work.
For every change that came to a formal vote, a document was prepared that
described the problem to be solved and one or more solutions. For each
solution there is a detailed proposal for changing the language; a rationale; test
cases that distinguish the proposal from the status quo or from other proposals
for solving that problem; discussions of current practice, cost to implementors,
cost to users, cost of not adopting the proposal, benefits of adoption, aesthetic
criteria; and any relevant informal discussion that may have preceded creation
of the formal proposal. All of these proposal documents were made available
on-line as well as in paper form. By my count, by June 1989 some 186 such
proposals were approved as language changes. (This count does not include
many proposals that came before the committee but were rejected.)

The purpose of this second edition is to bridge the gap between the first
edition and the forthcoming ANSI standard for Common Lisp. Because of the
requirement for formal public review, it will be some time yet before the ANSI
standard is final. This book in no way resembles the forthcoming standard
(which is being written independently by Kathy Chapman of Digital Equip-
ment Corporation with assistance from the X3J13 Drafting Subcommittee).

I have incorporated into this second edition a great deal of material based
on the votes of X3J13, in order to give the reader a picture of where the
language is heading. My purpose here is not simply to quote the X3J13
documents verbatim but to paraphrase them and relate them to the structure
of the first edition. A single vote by X3J13 may be discussed in many parts
of this book, and a single passage of this book may be affected by many of
the votes.

I wish to be very clear: this book i1s not an official document of X3J13,
though it is based on publicly available material produced by X3J13. In
no way does this book constitute a definitive description of the forthcoming
ANST standard. The committee’s decisions have been remarkably stable (it
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has rescinded earlier decisions only two or three times), and I do not expect
radical changes in direction. Nevertheless, it is quite probable that the draft
standard will be substantively revised in response to editorial review or public
comment. I have therefore reported here on the actions of X3J13 not to
inscribe them in stone, but to make clear how the language of the first edition
is likely to change. I have tried to be careful in my wording to avoid saying
“the language has been changed” and to state simply that “X3J13 voted at
such-and-so time to make the following change.”

Until the day when an official ANSI Common Lisp standard emerges, it
is likely that the 1984 definition of Common Lisp will continue to be used
widely. This book has been designed to be used as a reference both to the
1984 definition and to the language as modified by the actions of X3.J13.

It contains the entire text of the first edition of Common Lisp: The Lan-
guage, with corrections and minor editorial changes; however, more than half
of the material in this edition is new. All new material is identified by solid
lines in the left margin. Dotted lines in the left margin indicate material from
the first edition that applies to the 1984 definition but that has been modified
by a vote of X3J13. Modifications to these outmoded passages are explained
by preceding or following text (which will have a solid line in the margin). In
summary:

- To use the 1984 language definition, read all material that does not have a
solid line in the margin.

- To use the updated language definition, read everything, but be wary of
material with a dotted line in the margin.

At the end of the book is an index of the X3J13 votes, ordered by the com-
mittee’s internal code names (included to ease cross-reference to the X3J13
documents, which may be useful during the public review periods). Refer-
ences to this list of votes appear as numbers in angle brackets; thus “(14)”
refers to the vote on issue number 14, whereas “[14]” refers to reference 14 in
the bibliography.

I have kept changes to the wording of the first-edition material to a min-
imum. Obvious spelling and typographical errors have been corrected, and
the entire text has been edited to a uniform style of spelling and punctuation.
(Note in particular that the first edition used the spelling “signalling” but
this edition, in deference to the style decision of the X3J13 Drafting Subcom-
mittee, uses “signaling.”) A few minor changes were made to accommodate
typographical or layout constraints. (For example, the word “also” has been
deleted from the first sentence of chapter 1, partly to make that paragraph
look better and partly to allow a better page break at the bottom of page 2.)
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In a very few cases the first edition contained substantive errors that I could
not in good conscience correct silently; these have been flagged by paragraphs
beginning with the phrase Notice of correction.

The chapter and section numbering of this edition matches that of the
first edition, with the exception that a new section 7.9 has been interpolated.
Four new chapters (26-29) describe substantial changes approved by X3J13:
an extended loop macro, a pretty printer interface, the Common Lisp Object
System, and the Common Lisp Condition System.

X3J13, in the course of its work, formed a subcommittee to study whether
additional means of iteration should be standardized for use in Common Lisp,
for a great deal of existing practice in this area was not included in the first
edition because of lack of agreement in 1984. The X3J13 Iteration Subcom-
mittee produced reports on three possible facilities. One (loop) was approved
for inclusion in the forthcoming draft standard and is described in chapter 26.

X3J13 expressed interest in the other two approaches (series and genera-
tors), but the consensus as of January 1989 was that these other approaches
were not yet sufficiently mature or in sufficiently widespread use to warrant
inclusion in the draft Common Lisp standard at that time. However, the sub-
committee was directed to continue work on these approaches and X3J13 is
open to the possibility of standardizing them at a later date. Please note that
I do not wish the prejudge the question of whether X3J13 will ever choose
to make the other two proposals the subject of standardization. Neverthe-
less, I have chosen to include them in the second edition, in cooperation with
Dr. Richard C. Waters, as appendices A and B, in order to make these ideas
available to the Lisp community. In my judgement these proposals address
an area of language design not otherwise covered by Common Lisp and are
likely to have practical value even if they are never adopted as part of a formal
standard.

Some new material in this book has nothing to do with the work of X3J13.
In many places I have added explanations, clarifications, new examples, warn-
ings, and tips on writing portable code. Appendix C contains a piece of code
that may help in understanding the backquote syntax.

This second edition, unlike the first edition, also includes a few diagrams
to pep up the text. However, there are absolutely no new jokes, and very few
outright lies.
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Would it be wonderful if, under the
pressure of all these difficulties, the
Convention should have been
forced into some deviations from
that artifi- cial structure and
regular symmetry which an
abstract view of the subject might
lead an ingenious theorist to
bestow on a constitution planned
in his closet or in his imagination?

—James Madison, The Federalist
No. 87, January 11, 1788



Introduction

Common Lisp is a new dialect of Lisp, a successor to MacLisp [33, 37], in-
fluenced strongly by Zetalisp [55, 34] and to some extent by Scheme [46] and
Interlisp [50].

1.1. Purpose

Common Lisp is intended to meet these goals:

Commonality

Common Lisp originated in an attempt to focus the work of several imple-
mentation groups, each of which was constructing successor implementations
of MacLisp for different computers. These implementations had begun to
diverge because of the differences in the implementation environments: mi-
crocoded personal computers (Zetalisp, Spice Lisp), commercial timeshared
computers (NIL—the “New Implementation of Lisp”), and supercomputers
(S-1 Lisp). While the differences among the several implementation environ-
ments of necessity will continue to force certain incompatibilities among the
implementations, Common Lisp serves as a common dialect to which each
implementation makes any necessary extensions.

Portability

Common Lisp intentionally excludes features that cannot be implemented
easily on a broad class of machines. On the one hand, features that are
difficult or expensive to implement on hardware without special microcode
are avoided or provided in a more abstract and efficiently implementable
form. (Examples of this are the invisible forwarding pointers and locatives
of Zetalisp. Some of the problems that they solve are addressed in differ-
ent ways in Common Lisp.) On the other hand, features that are useful
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only on certain “ordinary” or “commercial” processors are avoided or made
optional. (An example of this is the type declaration facility, which is use-
ful in some implementations and completely ignored in others. Type dec-
larations are completely optional and for correct programs affect only effi-
ciency, not semantics.) Common Lisp is designed to make it easy to write
programs that depend as little as possible on machine-specific characteris-
tics, such as word length, while allowing some variety of implementation
techniques.

Consistency

Most Lisp implementations are internally inconsistent in that by default the
interpreter and compiler may assign different semantics to correct programs.
This semantic difference stems primarily from the fact that the interpreter
assumes all variables to be dynamically scoped, whereas the compiler assumes
all variables to be local unless explicitly directed otherwise. This difference
has been the usual practice in Lisp for the sake of convenience and efficiency
but can lead to very subtle bugs. The definition of Common Lisp avoids
such anomalies by explicitly requiring the interpreter and compiler to impose
identical semantics on correct programs so far as possible.

Frpressiveness

Common Lisp culls what experience has shown to be the most useful and un-
derstandable constructs from not only MacLisp but also Interlisp, other Lisp
dialects, and other programming languages. Constructs judged to be awk-
ward or less useful have been excluded. (An example is the store construct
of MacLisp.)

Compatibility
Unless there is a good reason to the contrary, Common Lisp strives to be

compatible with Lisp Machine Lisp, MacLisp, and Interlisp, roughly in that
order.

Efficiency

Common Lisp has a number of features designed to facilitate the production of
high-quality compiled code in those implementations whose developers care to
invest effort in an optimizing compiler. One implementation of Common Lisp,
namely S-1 Lisp, already has a compiler that produces code for numerical
computations that 1s competitive in execution speed to that produced by
a Fortran compiler [11]. The S-1 Lisp compiler extends the work done in
MacLisp to produce extremely efficient numerical code [19].



INTRODUCTION 3

Power

Common Lisp is a descendant of MacLisp, which has traditionally placed
emphasis on providing system-building tools. Such tools may in turn be used
to build the user-level packages such as Interlisp provides; these packages are
not, however, part of the Common Lisp core specification. It is expected such
packages will be built on top of the Common Lisp core.

Stability

It is intended that Common Lisp will change only slowly and with due delib-
eration. The various dialects that are supersets of Common Lisp may serve
as laboratories within which to test language extensions, but such extensions
will be added to Common Lisp only after careful examination and experimen-
tation.

The goals of Common Lisp are thus very close to those of Standard Lisp
[31] and Portable Standard Lisp [51]. Common Lisp differs from Standard
Lisp primarily in incorporating more features, including a richer and more
complicated set of data types and more complex control structures.

This book is intended to be a language specification rather than an
implementation specification (although implementation notes are scattered
throughout the text). It defines a set of standard language concepts and con-
structs that may be used for communication of data structures and algorithms
in the Common Lisp dialect. This set of concepts and constructs i1s sometimes
referred to as the “core Common Lisp language” because it contains conceptu-
ally necessary or important features. It is not necessarily implementationally
minimal. While many features could be defined in terms of others by writing
Lisp code, and indeed may be implemented that way, 1t was felt that these
features should be conceptually primitive so that there might be agreement
among all users as to their usage. (For example, bignums and rational numbers
could be implemented as Lisp code given operations on fixnums. However, it
is important to the conceptual integrity of the language that they be regarded
by the user as primitive, and they are useful enough to warrant a standard
definition.)

For the most part, this book defines a programming language, not a pro-
gramming environment. A few interfaces are defined for invoking such stan-
dard programming tools as a compiler, an editor, a program trace facility,
and a debugger, but very little is said about their nature or operation. It is
expected that one or more extensive programming environments will be built
using Common Lisp as a foundation, and will be documented separately.
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There are now many implementations of Common Lisp, some programmed
by research groups in universities and some by companies that sell them com-
mercially, and a number of useful programming environments have indeed
grown up around these implementations. What is more, all the goals stated
above have been achieved, most notably that of portability. Moving large
bodies of Lisp code from one computer to another is now routine.

1.2. Notational Conventions

A number of special notational conventions are used throughout this book for
the sake of conciseness.

1.2.1. Decimal Numbers

All numbers in this book are in decimal notation unless there is an explicit
indication to the contrary. (Decimal notation is normally taken for granted,
of course. Unfortunately, for certain other dialects of Lisp, MacLisp in partic-
ular, the default notation for numbers is octal (base 8) rather than decimal,
and so the use of decimal notation for describing Common Lisp is, taken in
its historical context, a bit unusuall)

1.2.2. Nil, False, and the Empty List

In Common Lisp, as in most Lisp dialects, the symbol nil is used to represent
both the empty list and the “false” value for Boolean tests. An empty list may,
of course, also be written (); this normally denotes the same object as nil.
(Tt is possible, by extremely perverse manipulation of the package system, to
cause the sequence of letters nil to be recognized not as the symbol that
represents the empty list but as another symbol with the same name. This
obscure possibility will be ignored in this book.) These two notations may
be used interchangeably as far as the Lisp system is concerned. However,
as a matter of style, this book uses the notation () when it i1s desirable to
emphasize the use of an empty list, and uses the notation nil when it is
desirable to emphasize the use of the Boolean “false”. The notation ’nil
(note the explicit quotation mark) is used to emphasize the use of a symbol.
For example:

(defun three () 3) ; Emphasize empty parameter list
(append () 7)) = O ; Emphasize use of empty lists
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(not nil) = t ; Emphasize use as Boolean “false”
(get ’'nil ’color) ; Emphasize use as a symbol

Any data object other than nil is construed to be Boolean “not false”, that
18, “true”. The symbol t is conventionally used to mean “true” when no other
value 1s more appropriate. When a function is said to “return false” or to “be
false” in some circumstance, this means that it returns nil. However, when
a function is said to “return frue” or to “be true’ in some circumstance, this
means that it returns some value other than nil, but not necessarily t.

1.2.3. Evaluation, Expansion, and Equivalence

Execution of code in Lisp is called evaluation because executing a piece of
code normally results in a data object called the value produced by the code.
The symbol = is used in examples to indicate evaluation. For example,

(+45) =09

means “the result of evaluating the code (+ 4 8) is (or would be, or would
have been) 9.”
The symbol — is used in examples to indicate macro expansion. For exam-

ple,
(push x v) — (setf v (cons x v))

means “the result of expanding the macro-call form (push x v) is (setf v
(cons x v)).” This implies that the two pieces of code do the same thing;
the second piece of code 1s the definition of what the first does.

The symbol = is used in examples to indicate code equivalence. For exam-

ple,

(ged x (ged y 2)) = (ged (ged x y) 2)

means “the value and effects of evaluating the form (gecd x (ged y z)) are
always the same as the value and effects of (ged (ged x y) z) for any values
of the variables x, y, and z.” This implies that the two pieces of code do the

same thing; however, neither directly defines the other in the way macro
expansion does.

1.2.4. Errors

When this book specifies that it “is an error” for some situation to occur, this
means that:
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-+ No valid Common Lisp program should cause this situation to occur.

- If this situation occurs, the effects and results are completely undefined as
far as adherence to the Common Lisp specification is concerned.

- No Common Lisp implementation is required to detect such an error. Of
course, implementors are encouraged to provide for detection of such errors
wherever reasonable.

This is not to say that some particular implementation might not define the
effects and results for such a situation; the point is that no program conforming
to the Common Lisp specification may correctly depend on such effects or
results.

On the other hand, if it is specified in this book that in some situation “an
error 18 signaled,” this means that:

- If this situation occurs, an error will be signaled (see error and cerror).

- Valid Common Lisp programs may rely on the fact that an error will be
signaled.

- Every Common Lisp implementation is required to detect such an error.

In places where it is stated that so-and-so “must” or “must not” or “may
not” be the case, then it “is an error” if the stated requirement is not met.
For example, if an argument “must be a symbol,” then it “is an error” if the
argument is not a symbol. In all cases where an error is to be signaled, the
word “signaled” is always used explicitly in this book.

X3J13 has adopted a more elaborate terminology for errors, and has made
some effort to specify the type of error to be signaled in situations where
signaling 1s appropriate. This effort was not complete as of September 1989,
and I have made little attempt to incorporate the new error terminology
or error type specifications in this book. However, the new terminology is
described and used in the specification of the Common Lisp Object System
appearing in chapter 28; this gives the flavor of how erroneous situations will
be described, and appropriate actions prescribed, in the forthcoming ANSI
Common Lisp standard.

1.2.5. Descriptions of Functions and Other Entities

Functions, variables, named constants, special forms, and macros are de-
scribed using a distinctive typographical format. Table 1-1 illustrates the
manner in which Common Lisp functions are documented. The first line
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Table 1-1: Sample Function Description

sample-function argl arg2 &optional arg3 arg4 [Function)

The function sample-function adds together argi and arg2, and then mul-
tiplies the result by arg3. If arg3is not provided or is nil, the multiplication
isn’t done. sample-function then returns a list whose first element is this
result and whose second element is arg4 (which defaults to the symbol foo).
For example:

(sample-function 3 4) = (7 foo)
(sample-function 1 2 2 ’bar) = (6 bar)

In general, (sample-function z y) = (list (+ z y) ’foo).

Table 1-2: Sample Variable Description

*sample-variable* [Variable)

The variable *sample-variable# specifies how many times the special form
sample-special-form should iterate. The value should always be a non-
negative integer or nil (which means iterate indefinitely many times). The
initial value is 0 (meaning no iterations).

Table 1-3: Sample Constant Description

sample-constant [Constant]

The named constant sample-constant has as its value the height of the
terminal screen in furlongs times the base-2 logarithm of the implementation’s
total disk capacity in bytes, as a floating-point number.

specifies the name of the function, the manner in which it accepts arguments,
and the fact that it 1s a function. If the function takes many arguments, then
the names of the arguments may spill across two or three lines. The para-
graphs following this standard header explain the definition and uses of the
function and often present examples or related functions.

Sometimes two or more related functions are explained in a single combined
description. In this situation the headers for all the functions appear together,



8 COMMON LISP

Table 1-4: Sample Special Form Description

sample-special-form [name] ({var}*) {form}* [Special form]

This evaluates each form in sequence as an implicit progn, and does this as
many times as specified by the global variable *sample-variable*. Each
variable var is bound and initialized to 43 before the first iteration, and un-
bound after the last iteration. The name name, if supplied, may be used
in a return-from form to exit from the loop prematurely. If the loop ends
normally, sample-special-formreturns nil. For example:

(setq *sample-variable* 3)
(sample-special-form () forml! form?2)

This evaluates forml1, form2, forml, form2, forml, form2 in that order.

Table 1-5: Sample Macro Description

sample-macro wvar [ declaration* | doc-string] {tag | statement}* [Macro]

This evaluates the statements as a prog body, with the variable var bound to
43.

(sample-macro x (return (+ x x))) = 86
(sample-macro var . body) — (prog ((var 43)) . body)

followed by the combined description.

In general, actual code (including actual names of functions) appears in this
typeface: (cons a b). Names that stand for pieces of code (metavariables)
are written in ¢talics. In a function description, the names of the parameters
appear in italics for expository purposes. The word &optional in the list
of parameters indicates that all arguments past that point are optional; the
default values for the parameters are described in the text. Parameter lists
may also contain &rest, indicating that an indefinite number of arguments
may appear, or &key, indicating that keyword arguments are accepted. (The
&optional/&rest/&key syntax is actually used in Common Lisp function
definitions for these purposes.)

Table 1-2 illustrates the manner in which a global variable is documented.
The first line specifies the name of the variable and the fact that it is a variable.
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Purely as a matter of convention, all global variables used by Common Lisp
have names beginning and ending with an asterisk.

Table 1-3 illustrates the manner in which a named constant is documented.
The first line specifies the name of the constant and the fact that it is a
constant. (A constant is just like a global variable, except that it is an error
ever to alter its value or to bind it to a new value.)

Tables 1-4 and 1-5 illustrate the documentation of special forms and macros,
which are closely related in purpose. These are very different from functions.
Functions are called according to a single, specific, consistent syntax; the
&optional/&rest/&key syntax specifies how the function uses its arguments
internally but does not affect the syntax of a call. In contrast, each special
form or macro can have its own idiosyncratic syntax. It is by special forms
and macros that the syntax of Common Lisp 1s defined and extended.

In the description of a special form or macro, an italicized word names
a corresponding part of the form that invokes the special form or macro.
Parentheses stand for themselves and should be written as such when invoking
the special form or macro. Brackets, braces, stars, plus signs, and vertical bars
are metasyntactic marks. Brackets, [ and ], indicate that what they enclose
is optional (may appear zero times or one time in that place); the square
brackets should not be written in code. Braces, { and }, simply parenthesize
what they enclose but may be followed by a star, *, or a plus sign, T; a
star indicates that what the braces enclose may appear any number of times
(including zero, that is, not at all), whereas a plus sign indicates that what
the braces enclose may appear any non-zero number of times (that is, must
appear at least once). Within braces or brackets, a vertical bar, |, separates
mutually exclusive choices. In summary, the notation {z}* means zero or
more occurrences of z, the notation {x}T means one or more occurrences of
z, and the notation [z] means zero or one occurrence of z. These notations
are also used for syntactic descriptions expressed as BNF-like productions, as
in table 22-2.

Double brackets, [ and ], indicate that any number of the alternatives
enclosed may be used, and those used may occur in any order, but each
alternative may be used at most once unless followed by a star. For example,

plzl {y}" | 2] ¢

means that at most one z, any number of y’s, and at most one z may appear
between the mandatory occurrences of p and ¢, and those that appear may
be in any order.

A downward arrow, |, indicates a form of syntactic indirection that helps
to make [ ] notation more readable. If X is some non-terminal symbol
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occurring on the left-hand side of some BNF production, then the right-hand
side of that production i1s to be textually substituted for any occurrence of
4 X. Thus the two fragments

p [dzyz-mizture] q
zyz-mazture ==z | {y}* | 2

are together equivalent to the previous example.

In the last example in table 1-5, notice the use of dot notation. The dot ap-
pearing in the expression (sample-macro var . body) means that the name
body stands for a list of forms, not just a single form, at the end of a list. This
notation is often used in examples.

In the heading line in table 1-5, notice the use of [ ] notation to indicate
that any number of declarations may appear but at most one documentation
string (which may appear before, after, or somewhere in the middle of any
declarations).

1.2.6. The Lisp Reader

The term “Lisp reader” refers not to you, the reader of this book, nor to some
person reading Lisp code, but specifically to a Lisp procedure, namely the
function read, which reads characters from an input stream and interprets
them by parsing as representations of Lisp objects.

1.2.7. Overview of Syntax

Certain characters are used in special ways in the syntax of Common Lisp.
The complete syntax is explained in detail in chapter 22, but a quick summary
here may be useful:

(A left parenthesis begins a list of items. The list may contain any number
of items, including zero. Lists may be nested. For example, (cons (car
x) (cdr y)) is a list of three things, of which the last two are themselves
lists.

) A right parenthesis ends a list of items.

> An acute accent (also called single quote or apostrophe) followed by
an expression form is an abbreviation for (quote form). Thus ’foo
means (quote foo) and ’(cons ’a ’b) means (quote (cons (quote
a) (quote b))).
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Semicolon is the comment character. It and all characters up to the end
of the line are discarded.

Double quotes surround character strings:
"This is a thirty-nine-character string."

Backslash is an escape character. It causes the next character to be treated
as a letter rather than for its usual syntactic purpose. For example, A\ (B
denotes a symbol whose name consists of the three characters 4, (, and
B. Similarly, "\"" denotes a character string containing one character, a
double quote, because the first and third double quotes serve to delimit the
string, and the second double quote serves as the contents of the string.
The backslash causes the second double quote to be taken literally and pre-
vents it from being interpreted as the terminating delimiter of the string.

Vertical bars are used in pairs to surround the name (or part of the name)
of a symbol that has many special characters in it. It is roughly equivalent
to putting a backslash in front of every character so surrounded. For
example, [A(B) |, Al (IBI) 1, and A\(B\) all mean the symbol whose name
consists of the four characters 4, (, B, and ).

The number sign signals the beginning of a complicated syntactic struc-
ture. The next character designates the precise syntax to follow. For
example, #0105 means 1055 (105 in octal notation); #x105 means 10516
(105 in hexadecimal notation); #b1011 means 10115 (1011 in binary no-
tation); #\L denotes a character object for the character L; and #(a b ¢)
denotes a vector of three elements a, b, and ¢. A particularly important
case is that #’fn means (function fn), in a manner analogous to ’form
meaning (quote form).

Grave accent (“backquote”) signals that the next expression is a template
that may contain commas. The backquote syntax represents a program
that will construct a data structure according to the template.

Commas are used within the backquote syntax.

Colon is used to indicate which package a symbol belongs to. For example,
network:reset denotes the symbol named reset in the package named
network. A leading colon indicates a keyword, a symbol that always eval-
uates to itself. The colon character is not actually part of the print name
of the symbol. This is all explained in chapter 11; until you read that,
just keep in mind that a symbol notated with a leading colon is in effect a
constant that evaluates to itself.
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Notice of correction. In the first edition, the characters “,” and “:” at the
left margin above were inadvertently omitted.

Brackets, braces, question mark, and exclamation point (that is, [, 1, {,
}, 7, and !) are not used for any purpose in standard Common Lisp syntax.
These characters are explicitly reserved to the user, primarily for use as macro
characters for user-defined lexical syntax extensions (see section 22.1.3).
© All code in this book is written using lowercase letters. Common Lisp is
. generally insensitive to the case in which code is written. Internally, names of
. symbols are ordinarily converted to and stored in uppercase form. There are
. ways to force case conversion on output if desired; see *print-case*. In this
. book, wherever an interactive exchange between a user and the Lisp system
. is shown, the input is exhibited with lowercase letters and the output with
 uppercase letters.

X3J13 voted in June 1989 (150) to introduce readtable-case. Certain
settings allow the names of symbols to be case-sensitive. The default behav-
ior, however, i1s as described in the previous paragraph. In any event, only
uppercase letters appear in the internal print names of symbols naming the
standard Common Lisp facilities described in this book.



Data Types

Common Lisp provides a variety of types of data objects. It is important to
note that in Lisp it is data objects that are typed, not variables. Any variable
can have any Lisp object as its value. (It is possible to make an explicit
declaration that a variable will in fact take on one of only a limited set of
values. However, such a declaration may always be omitted, and the program
will still run correctly. Such a declaration merely constitutes advice from the
user that may be useful in gaining efficiency. See declare.)

In Common Lisp, a data type is a (possibly infinite) set of Lisp objects.
Many Lisp objects belong to more than one such set, and so it doesn’t always
make sense to ask what is the type of an object; instead, one usually asks only
whether an object belongs to a given type. The predicate typep may be used
to ask whether an object belongs to a given type, and the function type-of
returns a type to which a given object belongs.

The data types defined in Common Lisp are arranged into a hierarchy
(actually a partial order) defined by the subset relationship. Certain sets
of objects, such as the set of numbers or the set of strings, are interesting
enough to deserve labels. Symbols are used for most such labels (here, and
throughout this book, the word “symbol” refers to atomic symbols, one kind
of Lisp object, elsewhere known as literal atoms). See chapter 4 for a complete
description of type specifiers.

The set of all objects is specified by the symbol t. The empty data type,
which contains no objects, is denoted by nil.

A type called common encompasses all the data objects required by the
. Common Lisp language. A Common Lisp implementation is free to provide
. other data types that are not subtypes of common.

X3J13 voted in March 1989 {17) to remove the type common (and the pred-
icate commonp) from the language, on the grounds that it has not proved to
be useful in practice and that it could be difficult to redefine in the face of

13
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other changes to the Common Lisp type system (such as the introduction of
CLOS classes).

The following categories of Common Lisp objects are of particular interest:
numbers, characters, symbols, lists, arrays, structures, and functions. There
are others as well. Some of these categories have many subdivisions. There are
also standard types defined to be the union of two or more of these categories.
The categories listed above, while they are data types, are neither more nor
less “real” than other data types; they simply constitute a particularly useful
slice across the type hierarchy for expository purposes.

Here are brief descriptions of various Common Lisp data types. The remain-
ing sections of this chapter go into more detail and also describe notations
for objects of each type. Descriptions of Lisp functions that operate on data
objects of each type appear in later chapters.

- Numbers are provided in various forms and representations. Common Lisp
provides a true integer data type: any integer, positive or negative, has in
principle a representation as a Common Lisp data object, subject only to
total memory limitations (rather than machine word width). A true rational
data type is provided: the quotient of two integers, if not an integer, is a
ratio. Floating-point numbers of various ranges and precisions are also
provided, as well as Cartesian complex numbers.

Characters represent printed glyphs such as letters or text formatting op-
erations. Strings are one-dimensional arrays of characters. Common Lisp
provides for a rich character set, including ways to represent characters of
various type styles.

+ Symbols (sometimes called atomic symbols for emphasis or clarity) are
named data objects. Lisp provides machinery for locating a symbol ob-
ject, given its name (in the form of a string). Symbols have property lists,
which in effect allow symbols to be treated as record structures with an
extensible set of named components, each of which may be any Lisp object.
Symbols also serve to name functions and variables within programs.

« Lists are sequences represented in the form of linked cells called conses.
There is a special object (the symbol nil) that is the empty list. All other
lists are built recursively by adding a new element to the front of an existing
list. This is done by creating a new cons, which is an object having two
components called the car and the cdr. The car may hold anything, and the
edris made to point to the previously existing list. (Conses may actually be
used completely generally as two-element record structures, but their most
important use is to represent lists.)
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« Arrays are dimensioned collections of objects. An array can have any non-
negative number of dimensions and is indexed by a sequence of integers. A
general array can have any Lisp object as a component; other types of arrays
are specialized for efficiency and can hold only certain types of Lisp objects.
It is possible for two arrays, possibly with differing dimension information,
to share the same set of elements (such that modifying one array modifies
the other also) by causing one to be displaced to the other. One-dimensional
arrays of any kind are called vectors. One-dimensional arrays of characters
are called strings. One-dimensional arrays of bits (that is, of integers whose
values are 0 or 1) are called bit-vectors.

« Hash tables provide an efficient way of mapping any Lisp object (a key) to
an associated object.

- Readtables are used to control the built-in expression parser read.

+ Packages are collections of symbols that serve as name spaces. The parser
recognizes symbols by looking up character sequences in the current pack-
age.

+ Pathnames represent names of files in a fairly implementation-independent
manner. They are used to interface to the external file system.

- Streams represent sources or sinks of data, typically characters or bytes.
They are used to perform I/0, as well as for internal purposes such as
parsing strings.

- Random-states are data structures used to encapsulate the state of the
built-in random-number generator.

- Structures are user-defined record structures, objects that have named com-
ponents. The defstruct facility is used to define new structure types. Some
Common Lisp implementations may choose to implement certain system-
supplied data types, such as bignums, readtables, streams, hash tables, and
pathnames, as structures, but this fact will be invisible to the user.

« Functions are objects that can be invoked as procedures; these may take ar-
guments and return values. (All Lisp procedures can be construed to return
values and therefore every procedure is a function.) Such objects include
compiled-functions (compiled code objects). Some functions are represented
as a list whose car is a particular symbol such as lambda. Symbols may
also be used as functions.
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X3J13 voted in June 1988 (90) to specify that symbols are not of type
function, but are automatically coerced to functions in certain situations
(see section 2.13).

X3J13 voted in June 1988 (30) to adopt the Common Lisp Condition Sys-
tem, thereby introducing a new category of data objects:

Conditions are objects used to affect control flow in certain conventional
ways by means of signals and handlers that intercept those signals. In
particular, errors are signaled by raising particular conditions, and errors
may be trapped by establishing handlers for those conditions.

X3J13 voted in June 1988 (12) to adopt the Common Lisp Object System,
thereby introducing additional categories of data objects:

Classes determine the structure and behavior of other objects, their in-
stances. Every Common Lisp data object belongs to some class. (In some
ways the CLOS class system is a generalization of the system of type spec-
ifiers of the first edition of this book, but the class system augments the
type system rather than supplanting it.)

- Methods are chunks of code that operate on arguments satisfying a partic-
ular pattern of classes. Methods are not functions; they are not invoked
directly on arguments but instead are bundled into generic functions.

Generic functions are functions that contain, among other information, a
set of methods. When invoked, a generic function executes a subset of its
methods. The subset chosen for execution depends in a specific way on the
classes or identities of the arguments to which it is applied.

These categories are not always mutually exclusive. The required relation-
ships among the various data types are explained in more detail in section 2.15.

2.1. Numbers

Several kinds of numbers are defined in Common Lisp. They are divided into
integers; ratios; floating-point numbers, with names provided for up to four
different floating-point representations; and complexr numbers.

X3J13 voted in March 1989 (151) to add the type real.

The number data type encompasses all kinds of numbers. For convenience,
there are names for some subclasses of numbers as well. Integers and ratios
are of type rational. Rational numbers and floating-point numbers are of
type real. Real numbers and complex numbers are of type number.
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Although the names of these types were chosen with the terminology of
mathematics in mind, the correspondences are not always exact. Integers and
ratios model the corresponding mathematical concepts directly. Numbers of
type float may be used to approximate real numbers, both rational and ir-
rational. The real type includes all Common Lisp numbers that represent
mathematical real numbers, though there are mathematical real numbers (ir-
rational numbers) that do not have an exact Common Lisp representation.
Only real numbers may be ordered using the <, >, <Y, and >§ functions.

Compatibility note: The Fortran 77 standard defines the term real datum to mean
“a processor approximation to the value of a real number.” In practice the Fortran
basic real type is the floating-point data type that Common Lisp calls single-float.
The Fortran double precision type is Common Lisp’s double-float. The Pascal real
data type is an “implementation-defined subset of the real numbers.” In practice
this is usually a floating-point type, often what Common Lisp calls double-float.

A translation of an algorithm written in Fortran or Pascal that uses real data
usually will use some appropriate precision of Common Lisp’s float type. Some
algorithms may gain accuracy or flexibility by using Common Lisp’s rational or
real type instead.

2.1.1. Integers

The integer data type is intended to represent mathematical integers. Unlike
most programming languages, Common Lisp in principle imposes no limit on
the magnitude of an integer; storage is automatically allocated as necessary
to represent large integers.

In every Common Lisp implementation there is a range of integers that are
represented more efficiently than others; each such integer is called a fiznum,
and an integer that is not a fixnum is called a bignum. Common Lisp is
designed to hide this distinction as much as possible; the distinction between
fixnums and bignums is visible to the user in only a few places where the
efficiency of representation is important. Exactly which integers are fixnums
is implementation-dependent; typically they will be those integers in the range
—2" to 2" — 1, inclusive, for some n not less than 15. See most-positive-
fixnum and most-negative-fixnum.

X3J13 voted in January 1989 (76) to specify that fixnum must be a su-
pertype of the type (signed-byte 16), and additionally that the value of
array-dimension-limit must be a fixnum (implying that the implementor
should choose the range of fixnums to be large enough to accommodate the
largest size of array to be supported).
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Rationale: This specification allows programmers to declare variables in portable
code to be of type fixnum for efficiency. Fixnums are guaranteed to encompass at
least the set of 16-bit signed integers (compare this to the data type short int in
the C programming language). In addition, any valid array index must be a fixnum,
and therefore variables used to hold array indices (such as a dotimes variable) may
be declared fixnumin portable code.

Integers are ordinarily written in decimal notation, as a sequence of decimal
digits, optionally preceded by a sign and optionally followed by a decimal
point. For example:

0 ; Zero
-0 ; This always means the same as 0
+6 ; The first perfect number
28 ; The second perfect number
1024. ; Two to the tenth power
-1 ;eﬂ'i
156511210043330985984000000. ;25 factorial (25!), probably a bignum

Compatibility note: MacLisp and Lisp Machine Lisp normally assume that in-
tegers are written in octal (radix-8) notation unless a decimal point is present.
Interlisp assumes integers are written in decimal notation and uses a trailing Q to
indicate octal radix; however, a decimal point, even in trailing position, alwaysindi-
cates a floating-point number. This is of course consistent with Fortran. Ada does
not permit trailing decimal points but instead requires them to be embedded. In
Common Lisp, integers written as described above are always construed to be in
decimal notation, whether or not the decimal point is present; allowing the decimal
point to be present permits compatibility with MacLisp.

Integers may be notated in radices other than ten. The notation
#nnrddddd or #nnRddddd

means the integer in radix-nn notation denoted by the digits ddddd. More
precisely, one may write #, a non-empty sequence of decimal digits represent-
ing an unsigned decimal integer n, r (or R), an optional sign, and a sequence
of radix-n digits, to indicate an integer written in radix n (which must be
between 2 and 36, inclusive). Only legal digits for the specified radix may be
used; for example, an octal number may contain only the digits 0 through 7.
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For digits above 9, letters of the alphabet of either case may be used in or-
der. Binary, octal, and hexadecimal radices are useful enough to warrant the
special abbreviations #b for #2r, #o for #8r, and #x for #16r. For example:

#2r11010101 ; Another way of writing 213 decimal
#b11010101 ; Ditto
#b+11010101 ; Ditto
#0325 ; Ditto, in octal radix
#xD5 ; Ditto, in hexadecimal radix
#16r+D5 ; Ditto
#0-300 ; Decimal —192, written in base 8
#3r-21010 ;Same thing in base 3
#25R-TH ; Same thing in base 25
#xACCEDED ; 181202413, in hexadecimal radix

2.1.2. Ratios

A ratio i1s a number representing the mathematical ratio of two integers. In-
tegers and ratios collectively constitute the type rational. The canonical
representation of a rational number is as an integer if its value is integral,
and otherwise as the ratio of two integers, the numerator and denominator,
whose greatest common divisor is 1, and of which the denominator is positive
(and in fact greater than 1, or else the value would be integral). A ratio is
notated with / as a separator, thus: 3/5. It is possible to notate ratios in
non-canonical (unreduced) forms, such as 4/6, but the Lisp function prini
always prints the canonical form for a ratio.

If any computation produces a result that is a ratio of two integers such
that the denominator evenly divides the numerator, then the result is imme-
diately converted to the equivalent integer. This is called the rule of rational
canonicalization.

Rational numbers may be written as the possibly signed quotient of decimal
numerals: an optional sign followed by two non-empty sequences of digits
separated by a /. This syntax may be described as follows:

ratio = [sign] {digit}t / {digit}*
The second sequence may not consist entirely of zeros. For example:

2/3 ; This 1s 1n canonical form
4/6 ; A non-canonical form for the same number
-17/23 ; A not very interesting ratio
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-30517578125/32768 ; This is (—5/2)'®
10/5 ; The canonical form for this is 2

To notate rational numbers in radices other than ten, one uses the same
radix specifiers (one of #nnR, #0, #B, or #X) as for integers. For example:

#0-101/75 ; Octal notation for -65/61

#3r120/21 ; Ternary notation for 15/7

#Xbc/ad ; Hexadecimal notation for 188/173
#xFADED/FACADE ; Hexadecimal notation for 1027565/16435934

2.1.3. Floating-Point Numbers

Common Lisp allows an implementation to provide one or more kinds of
floating-point number, which collectively make up the type float. Now a
floating-point number is a (mathematical) rational number of the form s -
f - b7P where sis +1 or —1, the sign; b 1s an integer greater than 1, the
base or radiz of the representation; p is a positive integer, the precision (in
base-b digits) of the floating-point number; fis a positive integer between
bP=1 and b —1 (inclusive), the significand; and e is an integer, the exponent.
The value of p and the range of e depends on the implementation and on
the type of floating-point number within that implementation. In addition,
there 1s a floating-point zero; depending on the implementation, there may
also be a “minus zero.” If there is no minus zero, then 0.0 and -0.0 are both
interpreted as simply a floating-point zero.

Implementation note: The form of the above description should not be con-
strued to require the internal representation to be in sign-magnitude form. Two’s-
complement and other representations are also acceptable. Note that the radix of
the internal representation may be other than 2, as on the IBM 360 and 370, which
use radix 16; see float-radix.

Floating-point numbers may be provided in a variety of precisions and sizes,
depending on the implementation. High-quality floating-point software tends
to depend critically on the precise nature of the floating-point arithmetic and
so may not always be completely portable. As an aid in writing programs
that are moderately portable, however, certain definitions are made here:

- A short floating-point number (type short-float) is of the representation
of smallest fixed precision provided by an implementation.
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Table 2-1: Recommended Minimum Floating-Point Precision and Exponent Size

Format Minimum Precision Minimum Exponent Size
Short 13 bits 5 bits
Single 24 bits 8 bits
Double 50 bits 8 bits
Long 50 bits 8 bits

- A long floating-point number (type long-float) is of the representation of
the largest fixed precision provided by an implementation.

- Intermediate between short and long formats are two others, arbitrarily
called single and double (types single-float and double-float).

The precise definition of these categories 1s implementation-dependent. How-
ever, the rough intent is that short floating-point numbers be precise to at
least four decimal places (but also have a space-efficient representation); single
floating-point numbers, to at least seven decimal places; and double floating-
point numbers, to at least fourteen decimal places. It is suggested that the
precision (measured in bits, computed as p log, b) and the exponent size (also
measured in bits, computed as the base-2 logarithm of 1 plus the maximum
exponent value) be at least as great as the values in table 2-1.
Floating-point numbers are written in either decimal fraction or computer-
ized scientific notation: an optional sign, then a non-empty sequence of digits
with an embedded decimal point, then an optional decimal exponent specifi-
cation. If there is no exponent specifier, then the decimal point is required,
and there must be digits after it. The exponent specifier consists of an ex-
ponent marker, an optional sign, and a non-empty sequence of digits. For
preciseness, here is a modified-BNF description of floating-point notation.

floating-point-number ::= [sign] {digit}* decimal-point {digit}T [exponent]
| [sign] {digit}T [decimal-point {digit}*] exponent

sign =+ | -

decimal-point .= .

digit:=0|1]2|3]|4|5|6]|7]|8]|9

exponent = exponenl-marker [sign] {digit}T

exponent-marker :=e|s|£f|d|1L|E|S|F|D|L

If no exponent specifier is present, or if the exponent marker e (or E) is used,
then the precise format to be used is not specified. When such a representation
is read and converted to an internal floating-point data object, the format
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specified by the variable *read-default-float-format* is used; the initial
value of this variable is single-float.
The letters s, £, d, and 1 (or their respective uppercase equivalents) explic-
itly specify the use of short, single, double, and long format, respectively.
Examples of floating-point numbers:

0.0 ; Floating-point zero in default format
0EO ; Also floating-point zero in default format
-.0 ; This may be a zero or a minus zero,

; depending on the implementation
0. ; The integer zero, not a floating-point zero!
0.0s0 ; A floating-point zero in short format
0s0 ; Also a floating-point zero in short format
3.1415926535897932384d0 ; A double-format approximation to
6.02E+23 ; Avogadro’s number, in default format
602E+21 ; Also Avogadro’s number, in default format
3.010299957f-1 ;logyg 2, in single format
-0.000000001s9 ;e™ in short format, the hard way

Notice of correction. The first edition unfortunately listed an incorrect
value (3.1010299957f£-1) for the base-10 logarithm of 2.

The internal format used for an external representation depends only on
the exponent marker and not on the number of decimal digits in the external
representation.

While Common Lisp provides terminology and notation sufficient to ac-
commodate four distinct floating-point formats, not all implementations will
have the means to support that many distinct formats. An implementation is
therefore permitted to provide fewer than four distinct internal floating-point
formats, in which case at least one of them will be “shared” by more than one
of the external format names short, single, double, and long according to the
following rules:

- If one internal format i1s provided, then 1t is considered to be single, but
serves also as short, double, and long. The data types short-float,
single-float, double-float, and long-float are considered to be iden-
tical. An expression such as (eql 1.0s0 1.0d0) will be true in such an
implementation because the two numbers 1.0s0 and 1.0d0 will be con-
verted into the same internal format and therefore be considered to have
the same data type, despite the differing external syntax. Similarly, (typep
1.0L0 ’short-float) will be true in such an implementation. For output
purposes all floating-point numbers are assumed to be of single format and
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thus will print using the exponent letter E or F.

+ If two internal formats are provided, then either of two correspondences
may be used, depending on which is the more appropriate:

— One format is short; the other is single and serves also as double and
long. The data types single-float, double-float, and long-float are
considered to be identical, but short-float is distinct. An expression
such as (eql 1.0s0 1.0d0) will be false, but (eql 1.0£0 1.0d0) will be
true. Similarly, (typep 1.0LO ’short-float) will be false, but (typep
1.0LO ’single-float) will be true. For output purposes all floating-
point numbers are assumed to be of short or single format.

— One format is single and serves also as short; the other is double and
serves also as long. The data types short-float and single-float
are considered to be identical, and the data types double-float and
long-float are considered to be identical. An expression such as (eql
1.0s0 1.0d0) will be false, as will (eql 1.0£f0 1.0d0); but (eql 1.0d0
1.0L0) will be true. Similarly, (typep 1.0LO ’short-float) will be
false, but (typep 1.0LO ’double-float) will be true. For output pur-
poses all floating-point numbers are assumed to be of single or double
format.

« If three internal formats are provided, then either of two correspondences
may be used, depending on which is the more appropriate:

— One format is short; another format i1s single; and the third format is
double and serves also as long. Similar constraints apply.

— One format is single and serves also as short; another is double; and the
third format is long.

Implementation note: [t is recommended that an implementation provide as
many distinct floating-point formats as feasible, using table 2-1 as a guideline. Ide-
ally, short-format floating-point numbers should have an “immediate” representation
that does not require heap allocation; single-format floating-point numbers should
approximate IEEE proposed standard single-format floating-point numbers; and
double-format floating-point numbers should approximate IEEE proposed standard
double-format floating-point numbers [23, 17, 16].
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2.1.4. Complex Numbers

Complex numbers (type complex) are represented in Cartesian form, with
a real part and an imaginary part, each of which is a non-complex number
(integer, ratio, or floating-point number). It should be emphasized that the
parts of a complex number are not necessarily floating-point numbers; in this,
Common Lisp is like PL/T and differs from Fortran. However, both parts
must be of the same type: either both are rational, or both are of the same
floating-point format.

Complex numbers may be notated by writing the characters #C followed by
a list of the real and imaginary parts. If the two parts as notated are not
of the same type, then they are converted according to the rules of floating-
point contagion as described in chapter 12. (Indeed, #C(a b) is equivalent to
#,(complex a b); see the description of the function complex.) For example:

#C(3.0s1 2.0s-1) ; Real and imaginary parts are short format

#C(5 -3) ; A Gaussian integer

#C(5/3 7.0) ; Will be converted internally to #C(1.66666 7.0)
#C(0 1) ; The imaginary unit, that 1s, :

The type of a specific complex number is indicated by a list of the word
complex and the type of the components; for example, a specialized repre-
sentation for complex numbers with short floating-point parts would be of
type (complex short-float). The type complex encompasses all complex
representations.

A complex number of type (complex rational), that is, one whose com-
ponents are rational, can never have a zero imaginary part. If the result of
a computation would be a complex rational with a zero imaginary part, the
result is immediately converted to a non-complex rational number by taking
the real part. This is called the rule of complexr canonicalization. This rule
does not apply to floating-point complex numbers; #C(5.0 0.0) and 5.0 are
different.

2.2. Characters

Characters are represented as data objects of type character.

There are two subtypes of interest, called standard-char and string-
char.

X3J13 voted in March 1989 (11) to remove the type string-char.

A character object can be notated by writing #\ followed by the charac-
ter itself. For example, #\g means the character object for a lowercase g.
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This works well enough for printing characters. Non-printing characters have
names, and can be notated by writing #\ and then the name; for example,
#\Space (or #\SPACE or #\space or #\sPaCE) means the space character. The
syntax for character names after #\ is the same as that for symbols. However,
only character names that are known to the particular implementation may

be used.

2.2.1. Standard Characters

Common Lisp defines a standard character set (subtype standard-char) for
two purposes. Common Lisp programs that are written in the standard char-
acter set can be read by any Common Lisp implementation; and Common Lisp
programs that use only standard characters as data objects are most likely
to be portable. The Common Lisp character set consists of a space charac-
ter #\Space, a newline character #\Newline, and the following ninety-four
non-blank printing characters or their equivalents:

rag % ()x+,-./0123456789: ;<H§>7
©@ABCDEFGHIJKLMNOPQRSTUVWIXYZL[\N] "~ _
‘abcdefghijklmnopgqrstuvwxyz{ll}”

The Common Lisp standard character set is apparently equivalent to the
ninety-five standard ASCII printing characters plus a newline character. Nev-
ertheless, Common Lisp 1s designed to be relatively independent of the ASCII
character encoding. For example, the collating sequence is not specified ex-
cept to say that digits must be properly ordered, the uppercase letters must
be properly ordered, and the lowercase letters must be properly ordered (see
char< for a precise specification). Other character encodings, particularly
EBCDIC, should be easily accommodated (with a suitable mapping of print-
ing characters).

Of the ninety-four non-blank printing characters, the following are used in
only limited ways in the syntax of Common Lisp programs:

L1 {321~ _ "~ %4

. All of these characters except ! and _ are used within format strings as
. formatting directives. Except for this, [, 1, {, }, 7, and ! are not used in
Common Lisp and are reserved to the user for syntactic extensions; ~ and _
are not yet used in Common Lisp but are part of the syntax of reserved tokens
. and are reserved to implementors; ~ is not yet used in Common Lisp and is
o reserved to implementors; and $ and % are normally regarded as alphabetic
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characters but are not used in the names of any standard Common Lisp
functions, variables, or other entities.

X3J13 voted in June 1989 (139) to add a format directive ~
ter 27).

The following characters are called semi-standard:

(see chap-

#\Backspace #\Tab #\Linefeed #\Page #\Return #\Rubout

Not all implementations of Common Lisp need to support them; but those
implementations that use the standard ASCII character set should support
them, treating them as corresponding respectively to the ASCII characters
BS (octal code 010), HT (011), LF (012), FF (014), CR (015), and DEL
(177). These characters are not members of the subtype standard-char
unless synonymous with one of the standard characters specified above. For
example, in a given implementation it might be sensible for the implementor
to define #\Linefeed or #\Return to be synonymous with #\Newline, or
#\Tab to be synonymous with #\Space.

2.2.2. Line Divisions

The treatment of line divisions is one of the most difficult issues in designing
portable software, simply because there 1s so little agreement among operating
systems. Some use a single character to delimit lines; the recommended ASCII
character for this purpose is the line feed character LF (also called the new line
character, NL), but some systems use the carriage return character CR. Much
more common is the two-character sequence CR followed by LF. Frequently
line divisions have no representation as a character but are implicit in the
structuring of a file into records, each record containing a line of text. A deck
of punched cards has this structure, for example.

Common Lisp provides an abstract interface by requiring that there be a sin-
gle character, #\Newline, that within the language serves as a line delimiter.
(The language C has a similar requirement.) An implementation of Common
Lisp must translate between this internal single-character representation and
whatever external representation(s) may be used.

Implementation note: How the character called #\Newline is represented inter-
nally is not specified here, but it is strongly suggested that the ASCII LF character
be used in Common Lisp implementations that use the ASCII character encoding.
The ASCII CR character is a workable, but in most cases inferior, alternative.
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When the first edition was written it was not yet clear that UNIX would
become so widely accepted. The decision to represent the line delimiter as a
single character has proved to be a good one.

The requirement that a line division be represented as a single character has
certain consequences. A character string written in the middle of a program in
such a way as to span more than one line must contain exactly one character
to represent each line division. Consider this code fragment:

(setq a-string "This string
contains
forty-two characters.")

Between g and ¢ there must be exactly one character, #\Newline; a two-
character sequence, such as #\Return and then #\Newline, is not acceptable,
nor is the absence of a character. The same is true between s and £.

When the character #\Newline is written to an output file, the Common
Lisp implementation must take the appropriate action to produce a line divi-
sion. This might involve writing out a record or translating #\Newline to a
CR/LF sequence.

Implementation note: If an implementation uses the ASCII character encoding,
uses the CR/LF sequence externally to delimit lines, uses LF to represent #\Newline
internally, and supports #\Return as a data object corresponding to the ASCII char-
acter CR, the question arises as to what action to take when the program writes out
#\Return followed by #\Newline. It should first be noted that #\Return is not a
standard Common Lisp character, and the action to be taken when #\Returnis writ-
ten out is therefore not defined by the Common Lisp language. A plausible approach
is to buffer the #\Return character and suppress it if and only if the next character
is #\Newline (the net effect is to generate a CR/LF sequence). Another plausible
approach is simply to ignore the difficulty and declare that writing #\Return and
then #\Newline results in the sequence CR/CR/LF in the output.

2.2.3. Non-standard Characters

Any implementation may provide additional characters, whether printing
characters or named characters. Some plausible examples:
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#\m #\a #\Break #\Home-Up #\Escape

The use of such characters may render Common Lisp programs non-portable.

2.2.4. Character Attributes

. Every object of type character has three attributes: code, bits, and font.
. The code attribute is intended to distinguish among the printed glyphs and
. formatting functions for characters; it is a numerical encoding of the character
. proper. The bits attribute allows extra flags to be associated with a character.
. The font attribute permits a specification of the style of the glyphs (such as
. italics). Each of these attributes may be understood to be a non-negative
. integer.

- The font attribute may be notated in unsigned decimal notation between
. the # and the \. For example, #3\a means the letter a in font 3. This might
 mean the same thing as #\« if font 3 were used to represent Greek letters.
. Note that not all Common Lisp implementations provide for non-zero font
attributes; see char-font-limit.

: The bits attribute may be notated by preceding the name of the character
. by the names or initials of the bits, separated by hyphens. The character itself
© may be written instead of the name, preceded if necessary by \. For example:

. #\Control-Meta-Return #\Meta-Control-Q
. #\Hyper-Space #\Meta-\a

. #\Control-A #\Meta-Hyper-\:

. #\C-M-Return #\Hyper-\m

. Note that not all Common Lisp implementations provide for non-zero bits
attributes; see char-bits-limit.

X3J13 voted in March 1989 (11) to replace the notion of bits and font
attributes with that of implementation-defined attributes.

2.2.5. String Characters

Any character whose bits and font attributes are zero may be contained in
. strings. All such characters together constitute a subtype of the characters;
. this subtype is called string-char.

X3J13 voted in March 1989 (11) to eliminate the type string-char. Two
new subtypes of character are base-character, defined to be equivalent to
the result of the function call
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(upgraded-array-element-type ’standard-char)
and extended-character, defined to be equivalent to the type specifier
(and character (not base-character))

An implementation may support additional subtypes of character that may
or may not be supertypes of base-character. In addition, an implementation
may define base-character to be equivalent to character. The choice of any
base characters that are not standard characters is implementation-defined.
Only base characters can be elements of a base string. No upper bound is
specified for the number of distinct characters of type base-character—
that is implementation-dependent—but the lower bound is 96, the number of
standard Common Lisp characters.

2.3. Symbols

Symbols are Lisp data objects that serve several purposes and have several
interesting characteristics. Every object of type symbol has a name, called
its print name. Given a symbol, one can obtain its name in the form of a
string. Conversely, given the name of a symbol as a string, one can obtain the
symbol itself. (More precisely, symbols are organized into packages, and all
the symbols in a package are uniquely identified by name. See chapter 11.)

Symbols have a component called the property list, or plist. By conven-
tion this is always a list whose even-numbered components (calling the first
component zero) are symbols, here functioning as property names, and whose
odd-numbered components are associated property values. Functions are pro-
vided for manipulating this property list; in effect, these allow a symbol to be
treated as an extensible record structure.

Symbols are also used to represent certain kinds of variables in Lisp pro-
grams, and there are functions for dealing with the values associated with
symbols in this role.

A symbol can be notated simply by writing its name. If its name 1s not
empty, and if the name consists only of uppercase alphabetic, numeric, or
certain pseudo-alphabetic special characters (but not delimiter characters such
as parentheses or space), and if the name of the symbol cannot be mistaken
for a number, then the symbol can be notated by the sequence of characters
in its name. Any uppercase letters that appear in the (internal) name may
be written in either case in the external notation (more on this below). For
example:
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FROBBOZ ; The symbol whose name is FROBB0OZ
frobboz ; Another way to notate the same symbol
fRObBoz ; Yet another way to notate it
unwind-protect ; A symbol with a - in 1ts name
+$ ; The symbol named +$
1+ ; The symbol named 1+
+1 ; This is the integer 1, not a symbol
pascal_style ; This symbol has an underscore in its name
b"2-4*a*c ; This is a single symbol!

; It has several special characters in its name
file.rel.43 ; This symbol has periods in its name
/usr/games/zork ; This symbol has slashes in its name

In addition to letters and numbers, the following characters are normally
considered to be alphabetic for the purposes of notating symbols:

+ - x /e $ % " & _ B <> "

Some of these characters have conventional purposes for naming things; for
example, symbols that name special variables generally have names beginning
and ending with *. The last character listed above, the period, is considered
alphabetic provided that a token does not consist entirely of periods. A single
period standing by itself is used in the notation of conses and dotted lists; a
token consisting of two or more periods is syntactically illegal. (The period
also serves as the decimal point in the notation of numbers.)

The following characters are also alphabetic by default but are explicitly re-
served to the user for definition as reader macro characters (see section 22.1.3)
or any other desired purpose and therefore should not be used routinely in
names of symbols:

70 L1 { %}

A symbol may have uppercase letters, lowercase letters, or both in its print
name. However, the Lisp reader normally converts lowercase letters to the
corresponding uppercase letters when reading symbols. The net effect is that
most of the time case makes no difference when notating symbols. Case does
make a difference internally and when printing a symbol. Internally the sym-
bols that name all standard Common Lisp functions, variables; and keywords
have uppercase names; their names appear in lowercase in this book for read-
ability. Typing such names with lowercase letters works because the function
read will convert lowercase letters to the equivalent uppercase letters.
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X3J13 voted in June 1989 (150) to introduce readtable-case, which con-
trols whether read will alter the case of letters read as part of the name of a
symbol.

If a symbol cannot be simply notated by the characters of i1ts name because
the (internal) name contains special characters or lowercase letters, then there
are two “escape” conventions for notating them. Writing a \ character before
any character causes the character to be treated itself as an ordinary character
for use in a symbol name; in particular, it suppresses internal conversion of
lowercase letters to their uppercase equivalents. If any character in a notation
is preceded by \, then that notation can never be interpreted as a number.
For example:

A\ ( ; The symbol whose name is (

\+1 ; The symbol whose name is +1

+\1 ; Also the symbol whose name is +1

\frobboz ; The symbol whose name is fROBB0Z
3.14159265\s0 ; The symbol whose name is 3.14159265s0
3.14159265\50 ; A different symbol, whose name is 3.14159265S50
3.14159265s0 ; A short-format floating-point approximation to «
APLA\360 ; The symbol whose name is APL\360

apl1\\360 ; Also the symbol whose name is APL\360
\N(b~2\)\ -\ 4#*axc ; The name is (B"2) - 4%A%*C;

; 1t has parentheses and two spaces in it
NA\D™2\)\ =\ 4x\ax\c ; The name 1s (b"2) - 4*a*c;
; the letters are explicitly lowercase

It may be tedious to insert a \ before every delimiter character in the name of
a symbol if there are many of them. An alternative convention is to surround
the name of a symbol with vertical bars; these cause every character between
them to be taken as part of the symbol’s name, as if \ had been written before
each one, excepting only | itself and \, which must nevertheless be preceded
by \. For example:

"1 ; The same as writing \"

| (b~2) - 4*axc ; The name 1s (b™2) - 4*a*c

|frobboz| ; The name is frobboz, not FROBB0OZ

| APL\360] ; The name 1s APL360, because the \ quotes the 3
[ APLA\\360 | ; The name 1s APL\360

[ap1\\360| ; The name is ap1\360

ININT ;Same as \[\|: the name is | |

[ (B~2) - 4xAxC| ; The name 1s (B~2) - 4*A*C;
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; 1t has parentheses and two spaces in it
| (b~2) - 4*axc ; The name 1s (b™2) - 4*a*c

2.4. Lists and Conses

A cons is a record structure containing two components called the car and
the cdr. Conses are used primarily to represent lists.

A list is recursively defined to be either the empty list or a cons whose edr
component is a list. A list is therefore a chain of conses linked by their cdr
components and terminated by nil, the empty list. The car components of
the conses are called the elements of the list. For each element of the list there
is a cons. The empty list has no elements at all.

A list is notated by writing the elements of the list in order, separated by
blank space (space, tab, or return characters) and surrounded by parentheses.

(abc) ; A list of three symbols
(2.0s0 (a 1) #\*) ; A list of three things: a short floating-point
; number, another list, and a character object

The empty list nil therefore can be written as (), because it is a list with no
elements.

A dotted list is one whose last cons does not have nil for its cdr, rather
some other data object (which is also not a cons, or the first-mentioned cons
would not be the last cons of the list). Such a list is called “dotted” because
of the special notation used for it: the elements of the list are written between
parentheses as before, but after the last element and before the right paren-
thesis are written a dot (surrounded by blank space) and then the cdr of the
last cons. As a special case, a single cons is notated by writing the car and
the cdr between parentheses and separated by a space-surrounded dot. For
example:

(a . 4) ; A cons whose car is a symbol
; and whose cdris an integer
(abc . d) ; A dotted list with three elements whose last cons

; has the symbol d in its cdr

Compatibility note: In MacLisp, the dot in dotted-list notation need not be
surrounded by white space or other delimiters. The dot is required to be delimited
in Common Lisp, as in Lisp Machine Lisp.
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It 1s legitimate to write something like (a b . (¢ d)); this means the same
as (a b ¢ d). The standard Lisp output routines will never print a list in
the first form, however; they will avoid dot notation wherever possible.

Often the term list 1s used to refer either to true lists or to dotted lists. When
the distinction is important, the term “true list” will be used to refer to a list
terminated by nil. Most functions advertised to operate on lists expect to
be given true lists. Throughout this book, unless otherwise specified, it 1s an
error to pass a dotted list to a function that is specified to require a list as an
argument.

Implementation note: Implementors are encouraged to use the equivalent of the
predicate endp wherever it is necessary to test for the end of a list. Whenever
feasible, this test should explicitly signal an error if a list is found to be terminated
by a non-nil atom. However, such an explicit error signal is not required, because
some such tests occur in important loops where efficiency is important. In such
cases, the predicate atom may be used to test for the end of the list, quietly treating
any non-nil list-terminating atom as if it were nil.

Sometimes the term tree is used to refer to some cons and all the other
conses transitively accessible to 1t through car and cdr links until non-conses
are reached; these non-conses are called the leaves of the tree.

Lists, dotted lists, and trees are not mutually exclusive data types; they
are simply useful points of view about structures of conses. There are yet
other terms, such as association list. None of these are true Lisp data types.
Conses are a data type, and nil is the sole object of type null. The Lisp
data type 1ist is taken to mean the union of the cons and null data types,
and therefore encompasses both true lists and dotted lists.

2.5. Arrays

An array is an object with components arranged according to a Cartesian
coordinate system. In general, these components may be any Lisp data ob-
jects.

The number of dimensions of an array is called its rank (this terminology
is borrowed from APL); the rank is a non-negative integer. Likewise, each
dimension is itself a non-negative integer. The total number of elements in
the array is the product of all the dimensions.

An implementation of Common Lisp may impose a limit on the rank of
an array, but this limit may not be smaller than 7. Therefore, any Common
Lisp program may assume the use of arrays of rank 7 or less. (A program
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may determine the actual limit on array ranks for a given implementation by
examining the constant array-rank-limit.)

It is permissible for a dimension to be zero. In this case, the array has no
elements, and any attempt to access an element is in error. However, other
properties of the array, such as the dimensions themselves, may be used. If the
rank is zero, then there are no dimensions, and the product of the dimensions
is then by definition 1. A zero-rank array therefore has a single element.

An array element is specified by a sequence of indices. The length of the
sequence must equal the rank of the array. Each index must be a non-negative
integer strictly less than the corresponding array dimension. Array indexing
is therefore zero-origin, not one-origin as in (the default case of) Fortran.

As an example, suppose that the variable foo names a 3-by-5 array. Then
the first index may be 0, 1, or 2, and the second index may be 0, 1, 2, 3,
or 4. One may refer to array elements using the function aref; for example,
(aref foo 2 1) refers to element (2, 1) of the array. Note that aref takes a
variable number of arguments: an array, and as many indices as the array has
dimensions. A zero-rank array has no dimensions, and therefore aref would
take such an array and no indices, and return the sole element of the array.

In general, arrays can be multidimensional, can share their contents with
other array objects, and can have their size altered dynamically (either en-
larging or shrinking) after creation. A one-dimensional array may also have a
fill pointer.

Multidimensional arrays store their components in row-major order; that is,
internally a multidimensional array is stored as a one-dimensional array, with
the multidimensional index sets ordered lexicographically, last index varying
fastest. This is important in two situations: (1) when arrays with different
dimensions share their contents, and (2) when accessing very large arrays in a
virtual-memory implementation. (The first situation is a matter of semantics;
the second, a matter of efficiency.)

An array that is not displaced to another array, has no fill pointer, and is
not to have its size adjusted dynamically after creation is called a simple array.
The user may provide declarations that certain arrays will be simple. Some
implementations can handle simple arrays in an especially efficient manner;
for example, simple arrays may have a more compact representation than
non-simple arrays.

X3J13 voted in June 1989 (3) to clarify that if one or more of the
:adjustable, :fill-pointer, and :displaced-to arguments is true when
make-array is called, then whether the resulting array is simple is unspecified;
but if all three arguments are false, then the resulting array is guaranteed to
be simple.
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2.5.1. Vectors

One-dimensional arrays are called vectorsin Common Lisp and constitute the
type vector (which is therefore a subtype of array). Vectors and lists are
collectively considered to be sequences. They differ in that any component of
a one-dimensional array can be accessed in constant time, whereas the average
component access time for a list is linear in the length of the list; on the other
hand, adding a new element to the front of a list takes constant time, whereas
the same operation on an array takes time linear in the length of the array.

A general vector (a one-dimensional array that can have any data object
as an element but that has no additional paraphernalia) can be notated by
notating the components in order, separated by whitespace and surrounded
by #( and ). For example:

#(a b ¢) ; A vector of length 3
#() ; An empty vector
#(2 3 57 11 13 17 19 23 29 31 37 41 43 47)
; A vector containing the primes below 50

Note that when the function read parses this syntax, it always constructs a
stmple general vector.

Rationale: Many people have suggested that brackets be used to notate vectors, as
[a b c] instead of #(a b ¢). This notation would be shorter, perhaps more read-
able, and certainly in accord with cultural conventions in other parts of computer
science and mathematics. However, to preserve the usefulness of the user-definable
macro-character feature of the function read, it is necessary to leave some characters
to the user for this purpose. Experience in MacLisp has shown that users, especially
implementors of languages for use in artificial intelligence research, often want to
define special kinds of brackets. Therefore Common Lisp avoids using brackets and
braces for any syntactic purpose.

Implementations may provide certain specialized representations of arrays
for efficiency in the case where all the components are of the same specialized
(typically numeric) type. All implementations provide specialized arrays for
the cases when the components are characters (or rather, a special subset of
the characters); the one-dimensional instances of this specialization are called
strings. All implementations are also required to provide specialized arrays
of bits, that is, arrays of type (array bit); the one-dimensional instances of
this specialization are called bit-vectors.
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2.5.2. Strings

: A string 1s simply a vector of characters. More precisely, a string is a
© specialized vector whose elements are of type string-char.

X3J13 voted in March 1989 (11) to eliminate the type string-char and
to redefine the type string to be the union of one or more specialized vector
types, the types of whose elements are subtypes of the type character. Sub-
types of string include simple-string, base-string, and simple-base-

string.
base-string = (vector base-character)
simple-base-string = (simple-array base-character (%))

An implementation may support other string subtypes as well. All Common
Lisp functions that operate on strings treat all strings uniformly; note, how-
ever, that 1t is an error to attempt to insert an extended character into a base
string.
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The type string is therefore a subtype of the type vector.

A string can be written as the sequence of characters contained in the string,
preceded and followed by a " (double quote) character. Any " or \ character
in the sequence must additionally have a \ character before it.

For example:

"Foo" ; A string with three characters in it
" ; An empty string

"\"APL\\3607\" he cried." ; A string with twenty characters
“lxl H I-x|" ; A ten-character string

Notice that any vertical bar | in a string need not be preceded by a \. Sim-
ilarly, any double quote in the name of a symbol written using vertical-bar
notation need not be preceded by a \. The double-quote and vertical-bar
notations are similar but distinct: double quotes indicate a character string
containing the sequence of characters, whereas vertical bars indicate a symbol
whose name is the contained sequence of characters.

The characters contained by the double quotes, taken from left to right,
occupy locations within the string with increasing indices. The leftmost char-
acter is string element number 0, the next one is element number 1, the next
one is element number 2, and so on.

Note that the function prini will print any character vector (not just a
simple one) using this syntax, but the function read will always construct a
simple string when it reads this syntax.

2.5.3. Bit-Vectors

A bit-vector can be written as the sequence of bits contained in the string,
preceded by ##; any delimiter character, such as whitespace, will terminate
the bit-vector syntax. For example:

#+¥10110 ; A five-bit bit-vector; bit 0 is a 1
#* ; An empty bit-vector

The bits notated following the ##, taken from left to right, occupy locations
within the bit-vector with increasing indices. The leftmost notated bit is
bit-vector element number 0, the next one is element number 1, and so on.

The function prini will print any bit-vector (not just a simple one) using
this syntax, but the function read will always construct a simple bit-vector
when it reads this syntax.
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2.6. Hash Tables

Hash tables provide an efficient way of mapping any Lisp object (a key) to an
associated object. They are provided as primitives of Common Lisp because
some implementations may need to use internal storage management strate-
gies that would make it very difficult for the user to implement hash tables in
a portable fashion. Hash tables are described in chapter 16.

2.7. Readtables

A readtable is a data structure that maps characters into syntax types for the
Lisp expression parser. In particular, a readtable indicates for each character
with syntax macro character what its macro definition is. This is a mechanism
by which the user may reprogram the parser to a limited but useful extent.
See section 22.1.5.

2.8. Packages

Packages are collections of symbols that serve as name spaces. The parser
recognizes symbols by looking up character sequences in the current package.
Packages can be used to hide names internal to a module from other code.
Mechanisms are provided for exporting symbols from a given package to the
primary “user” package. See chapter 11.

2.9. Pathnames

Pathnames are the means by which a Common Lisp program can interface to
an external file system in a reasonably implementation-independent manner.
See section 23.1.1.

2.10. Streams

A stream is a source or sink of data, typically characters or bytes. Nearly
all functions that perform I/0O do so with respect to a specified stream. The
function open takes a pathname and returns a stream connected to the file
specified by the pathname. There are a number of standard streams that are
used by default for various purposes. See chapter 21.

X3J13 voted in January 1989 (167) to introduce subtypes of type stream:
broadcast-stream, concatenated-stream, echo-stream, synonym-stream,
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string-stream, file-stream, and two-way-stream are disjoint subtypes of
stream. Note particularly that a synonym stream is always and only of type
synonym-stream, regardless of the type of the stream for which it 1s a syn-
onym.

2.11. Random-States

An object of type random-state i1s used to encapsulate state information
used by the pseudo-random number generator. For more information about
random-state objects, see section 12.9.

2.12. Structures

Structures are instances of user-defined data types that have a fixed number
of named components. They are analogous to records in Pascal. Structures
are declared using the defstruct construct; defstruct automatically defines
access and constructor functions for the new data type.

Different structures may print out in different ways; the definition of a
structure type may specify a print procedure to use for objects of that type
(see the :print-function option to defstruct). The default notation for
structures is

#S (structure-name
slot-name-1 slot-value-1
slot-name-2 slot-value-2

)

where #S indicates structure syntax, structure-name is the name (a symbol) of
the structure type, each slot-name is the name (also a symbol) of a component,
and each corresponding slot-value is the representation of the Lisp object in
that slot.

2.13. Functions

o A function is anything that may be correctly given to the funcall or apply
. function, and is to be executed as code when arguments are supplied.

A compiled-function 1s a compiled code object.

A lambda-expression (a list whose car is the symbol lambda) may serve as
a function. Depending on the implementation, it may be possible for other
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lists to serve as functions. For example, an implementation might choose to
represent a “lexical closure” as a list whose car contains some special marker.

A symbol may serve as a function; an attempt to invoke a symbol as a
© function causes the contents of the symbol’s function cell to be used. See
' symbol-function and defun.

The result of evaluating a function special form will always be a function.

X3J13 voted in June 1988 (90) to revise these specifications. The type
function is to be digjoint from cons and symbol, and so a list whose car
is lambda is not, properly speaking, of type function, nor is any symbol.
However, standard Common Lisp functions that accept functional arguments
will accept a symbol or a list whose car is lambda and automatically coerce
it to be a function; such standard functions include funcall, apply, and
mapcar. Such functions do not, however, accept a lambda-expression as a
functional argument; therefore one may not write

(mapcar ’(lambda (x y) (sqrt (* x y))) p q)
but instead one must write something like
(mapcar #’(lambda (x y) (sqrt (* x y))) p q)

This change makes it impermissible to represent a lexical closure as a list
whose car is some special marker.
The value of a function special form will always be of type function.

2.14. Unreadable Data Objects

Some objects may print in implementation-dependent ways. Such objects
cannot necessarily be reliably reconstructed from a printed representation,
and so they are usually printed in a format informative to the user but not
acceptable to the read function: #<useful information>. The Lisp reader will
signal an error on encountering #<.

As a hypothetical example, an implementation might print

#<stack-pointer si:rename-within-new-definition-maybe #0311037552>

for an implementation-specific “internal stack pointer” data type whose
printed representation includes the name of the type, some information about
the stack slot pointed to, and the machine address (in octal) of the stack slot.

See print-unreadable-object, a macro that prints an object using #<
syntax.
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2.15. Overlap, Inclusion, and Disjointness of Types

The Common Lisp data type hierarchy is tangled and purposely left some-
what open-ended so that implementors may experiment with new data types
as extensions to the language. This section explicitly states all the defined
relationships between types, including subtype/supertype relationships, dis-
jointness, and exhaustive partitioning. The user of Common Lisp should not
depend on any relationships not explicitly stated here. For example, it is not
valid to assume that because a number is not complex and not rational that
it must be a float, because implementations are permitted to provide yet
other kinds of numbers.

First we need some terminology. If z is a supertype of y, then any object
of type y is also of type z, and y is said to be a subtype of z. If types = and
y are disjoint, then no object (in any implementation) may be both of type #
and of type y. Types a; through a, are an ezhaustive union of type z if each
a; is a subtype of z, and any object of type z is necessarily of at least one of
the types aj; a; through a, are furthermore an ezhaustive partition if they are
also pairwise disjoint.

+ The type t is a supertype of every type whatsoever. Every object 1s of type
t.

+ The type nil is a subtype of every type whatsoever. No object is of type
nil.

+ The types cons, symbol, array, number, and character are pairwise dis-
joint.
X3J13 voted in June 1988 (41) to extend the preceding paragraph as follows.

- The types cons, symbol, array, number, character, hash-table,
readtable, package, pathname, stream, random-state, and any single
other type created by defstruct or defclass are pairwise disjoint.

The wording of the first edition was intended to allow implementors to use
the defstruct facility to define the built-in types hash-table, readtable,
package, pathname, stream, random-state. The change still permits this im-
plementation strategy but forbids these built-in types from including, or being
included in, other types (in the sense of the defstruct :include option).

X3J13 voted in June 1988 (90) to specify that the type function is disjoint
from the types cons, symbol, array, number, and character. The type
compiled-function is a subtype of function; implementations are free to
define other subtypes of function.
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+ The types rational, float, and complex are pairwise disjoint subtypes of
number.

X3J13 voted in March 1989 (151) to rewrite the preceding item as follows.

+ The types real and complex are pairwise disjoint subtypes of number.

Rationale: It might be thought that real and complex should form an exhaustive
partition of the type number. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp number system.

+ The types rational and float are pairwise disjoint subtypes of real.

Rationale: It might be thought that rational and float should form an exhaus-
tive partition of the type real. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp number system.

- The types integer and ratio are disjoint subtypes of rational.

Rationale: It might be thought that integer and ratio should form an exhaustive
partition of the type rational. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp rational number
system.

- The types fixnum and bignum are disjoint subtypes of integer.

Rationale: It might be thought that fixnum and bignumshould form an exhaustive
partition of the type integer. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp integer number
system, such as the idea of adding explicit representations of infinity or of positive
and negative infinity.

X3J13 voted in January 1989 (76) to specify that the types fixnum and
bignum do in fact form an exhaustive partition of the type integer; more
precisely, they voted to specify that the type bignum is by definition equivalent
to (and integer (not fixnum)). This is consistent with the first edition
text in section 2.1.1.

I interpret this to mean that implementators could still experiment with
such extensions as adding explicit representations of infinity, but such infinities
would necessarily be of type bignum.
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- The types short-float, single-float, double-float, and long-float
are subtypes of float. Any two of them must be either disjoint or identical;
if identical, then any other types between them in the above ordering must
also be identical to them (for example, if single-float and long-float
are identical types, then double-float must be identical to them also).

+ The type null is a subtype of symbol; the only object of type null is nil.

+ The types cons and null form an exhaustive partition of the type 1list.

- The type standard-char is a subtype of string-char; string-char is a
subtype of character.

X3J13 voted in March 1989 (11) to remove the type string-char. The
preceding item is replaced by the following.

« The type standard-char is a subtype of base-character. The types
base-character and extended-character form an exhaustive partition
of character.

- The type string is a subtype of vector, for string means (vector
string-char).
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X3J13 voted in March 1989 (11) to remove the type string-char. The
preceding item is replaced by the following.

- The type string is a subtype of vector; it is the union of all types
(vector ¢) such that cis a subtype of character.

- The type bit-vector is a subtype of vector, for bit-vector means
(vector bit).

- The types (vector t), string, and bit-vector are disjoint.

- The type vector is a subtype of array; for all types z, the type (vector
z) 1s the same as the type (array = (*)).

+ The type simple-array is a subtype of array.

- The types simple-vector, simple-string, and simple-bit-vector are
disjoint subtypes of simple-array, for they respectively mean (simple-
array t (*)), (simple-array string-char (#)), and (simple-array
bit (*)).

X3J13 voted in March 1989 (11) to remove the type string-char. The
preceding item is replaced by the following.

- The types simple-vector, simple-string, and simple-bit-vector are
disjoint subtypes of simple-array, for they mean (simple-array t (%)),
the union of all types (simple-array c¢ (*)) such that ¢ is a subtype of
character, and (simple-array bit (*)), respectively.

+ The type simple-vector is a subtype of vector and indeed is a subtype
of (vector t).

+ The type simple-string is a subtype of string. (Note that although
stringis a subtype of vector, simple-string is not a subtype of simple-
vector.)

Rationale: The hypothetical name simple-general-vector would have been more
accurate than simple-vector, but in this instance euphony and user convenience
were deemed more important to the design of Common Lisp than a rigid symmetry.

+ The type simple-bit-vector is a subtype of bit-vector. (Note that
although bit-vector is a subtype of vector, simple-bit-vector is not a
subtype of simple-vector.)

- The types vector and 1ist are disjoint subtypes of sequence.
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- The types random-state, readtable, package, pathname, stream, and
hash-table are pairwise disjoint.

X3J13 voted in June 1988 (41) to make random-state, readtable,
package, pathname, stream, and hash-table pairwise disjoint from a number
of other types as well; see note above.

X3J13 voted in January 1989 (167) to introduce subtypes of type stream.

- The types two-way-stream, echo-stream, broadcast-stream, file-
stream, synonym-stream, string-stream, and concatenated-stream are
disjoint subtypes of stream.

+ Any two types created by defstruct are digjoint unless one is a supertype
of the other by virtue of the :include option.

« An exhaustive union for the type common is formed by the types cons,
symbol, (array z) where z is either t or a subtype of common, string,
fixnum, bignum, ratio, short-float, single-float, double-float,
long-float, (complex z) where zis a subtype of common, standard-char,
hash-table, readtable, package, pathname, stream, random-state, and
all types created by the user via defstruct. An implementation may not
unilaterally add subtypes to common; however, future revisions to the Com-
mon Lisp standard may extend the definition of the common data type. Note
that a type such as number or array may or may not be a subtype of common,
depending on whether or not the given implementation has extended the
set of objects of that type.

X3J13 voted in March 1989 (17) to remove the type common from the lan-
guage.



Scope and Extent

In describing various features of the Common Lisp language, the notions of
scope and extent are frequently useful. These notions arise when some object
or construct must be referred to from some distant part of a program. Scope
refers to the spatial or textual region of the program within which references
may occur. Extent refers to the interval of time during which references may
occur.

As a simple example, consider this program:

(defun copy-cell (x) (cons (car x) (cdr x)))

The scope of the parameter named x is the body of the defun form. There is
no way to refer to this parameter from any other place but within the body of
the defun. Similarly, the extent of the parameter x (for any particular call to
copy-cell) is the interval from the time the function is invoked to the time
it is exited. (In the general case, the extent of a parameter may last beyond
the time of function exit, but that cannot occur in this simple case.)

Within Common Lisp, a referenceable entity is established by the execu-
tion of some language construct, and the scope and extent of the entity are
described relative to the construct and the time (during execution of the con-
struct) at which the entity is established. For the purposes of this discussion,
the term “entity” refers not only to Common Lisp data objects, such as sym-
bols and conses, but also to variable bindings (both ordinary and special),
catchers, and go targets. It is important to distinguish between an entity and
a name for the entity. In a function definition such as

(defun foo (xy) (* x (+y 1)))

there is a single name, x, used to refer to the first parameter of the procedure
whenever it is invoked; however, a new binding 1s established on every invoca-
tion. A binding is a particular parameter instance. The value of a reference to

46
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the name x depends not only on the scope within which it occurs (the one in
the body of foo in the example occurs in the scope of the function definition’s
parameters) but also on the particular binding or instance involved. (In this
case, it depends on the invocation during which the reference is made). More
complicated examples appear at the end of this chapter.

There are a few kinds of scope and extent that are particularly useful in
describing Common Lisp:

- Lexical scope. Here references to the established entity can occur only within
certain program portions that are lexically (that is, textually) contained
within the establishing construct. Typically the construct will have a part
designated the body, and the scope of all entities established will be (or
include) the body.

Example: the names of parameters to a function normally are lexically
scoped.

- Indefinite scope. References may occur anywhere, in any program.

+ Dynamuc extent. References may occur at any time in the interval between
establishment of the entity and the explicit disestablishment of the entity.
As a rule, the entity is disestablished when execution of the establishing
construct completes or is otherwise terminated. Therefore entities with dy-
namic extent obey a stack-like discipline, paralleling the nested executions
of their establishing constructs.

Example: the with-open-file construct opens a connection to a file and
creates a stream object to represent the connection. The stream object
has indefinite extent, but the connection to the open file has dynamic ex-
tent: when control exits the with-open-file construct, either normally or
abnormally, the stream is automatically closed.

Example: the binding of a “special” variable has dynamic extent.

- Indefinite extent. The entity continues to exist as long as the possibility
of reference remains. (An implementation is free to destroy the entity if
it can prove that reference to it is no longer possible. Garbage collection
strategies implicitly employ such proofs.)

Example: most Common Lisp data objects have indefinite extent.

Example: the bindings of lexically scoped parameters of a function have
indefinite extent. (By contrast, in Algol the bindings of lexically scoped
parameters of a procedure have dynamic extent.) The function definition
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(defun compose (f g)
#’(lambda (x)
(funcall f (funcall g x))))

when given two arguments, immediately returns a function as its value.
The parameter bindings for £ and g do not disappear because the returned
function, when called, could still refer to those bindings. Therefore

(funcall (compose #’sqrt #’abs) -9.0)

produces the value 3.0. (An analogous procedure would not necessarily
work correctly in typical Algol implementations or, for that matter, in most
Lisp dialects.)

In addition to the above terms, it is convenient to define dynamic scope
to mean ndefinite scope and dynamic extent. Thus we speak of “special”
variables as having dynamic scope, or being dynamically scoped, because they
have indefinite scope and dynamic extent: a special variable can be referred
to anywhere as long as its binding is currently in effect.

The term “dynamic scope” is a misnomer. Nevertheless it 1s both traditional
and useful.

The above definitions do not take into account the possibility of shadowing.
Remote reference of entities is accomplished by using names of one kind or
another. If two entities have the same name, then the second may shadow
the first, in which case an occurrence of the name will refer to the second and
cannot refer to the first.

In the case of lexical scope, if two constructs that establish entities with the
same name are textually nested, then references within the inner construct
refer to the entity established by the inner one; the inner one shadows the
outer one. Qutside the inner construct but inside the outer one, references
refer to the entity established by the outer construct. For example:

(defun test (x z)
(let ((z (* x 2))) (print z))
z)

The binding of the variable z by the let construct shadows the parameter
binding for the function test. The reference to the variable z in the print
form refers to the let binding. The reference to z at the end of the function
refers to the parameter named z.

In the case of dynamic extent, if the time intervals of two entities overlap,
then one interval will necessarily be nested within the other one. This is a
property of the design of Common Lisp.
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Implementation note: Behind the assertion that dynamic extents nest properly
is the assumption that there is only a single program or process. Common Lisp
does not address the problems of multiprogramming (timesharing) or multiprocess-
ing (more than one active processor) within a single Lisp environment. The doc-
umentation for implementations that extend Common Lisp for multiprogramming
or multiprocessing should be very clear on what modifications are induced by such
extensions to the rules of extent and scope. Implementors should note that Common
Lisp has been carefully designed to allow special variables to be implemented using
either the “deep binding” technique or the “shallow binding” technique, but the two
techniques have different semantic and performance implications for multiprogram-
ming and multiprocessing.

A reference by name to an entity with dynamic extent will always refer to
the entity of that name that has been most recently established that has not
yvet been disestablished. For example:

(defun funi (x)
(catch ’trap (+ 3 (fun2 x))))

(defun fun2 (y)
(catch ’trap (* 5 (fun3 y))))

(defun fun3 (z)
(throw ’trap z))

Consider the call (funl 7). The result will be 10. At the time the throw
is executed, there are two outstanding catchers with the name trap: one
established within procedure funi, and the other within procedure fun2. The
latter is the more recent, and so the value 7 is returned from the catch form
in fun2. Viewed from within fun3, the catch in fun2 shadows the one in
funl. Had fun2 been defined as

(defun fun2 (y)
(catch ’snare (* 5 (fun3 y))))

then the two catchers would have different names, and therefore the one in
funl would not be shadowed. The result would then have been 7.

As a rule, this book simply speaks of the scope or extent of an entity; the
possibility of shadowing 1s left implicit.

The important scope and extent rules in Common Lisp follow:

- Variable bindings normally have lexical scope and indefinite extent.
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- Variable bindings for which there is a dynamic-extent declaration also have

lexical scope and indefinite extent, but objects that are the values of such
bindings may have dynamic extent. (The declaration is the programmer’s
guarantee that the program will behave correctly even if certain of the data
objects have only dynamic extent rather than the usual indefinite extent.)

- Bindings of variable names to symbol macros by symbol-macrolet have

lexical scope and indefinite extent.

- Variable bindings that are declared to be special have dynamic scope

(indefinite scope and dynamic extent).

- Bindings of function names established, for example, by flet and labels

have lexical scope and indefinite extent.

- Bindings of function names for which there is a dynamic-extent declaration

also have lexical scope and indefinite extent, but function objects that are
the values of such bindings may have dynamic extent.

- Bindings of function names to macros as established by macrolet have

lexical scope and indefinite extent.

- Condition handlers and restarts have dynamic scope (see chapter 29).

-+ A catcher established by a catch or unwind-protect special form has dy-

namic scope.

- An exit point established by a block construct has lexical scope and dy-

namic extent. (Such exit points are also established by do, prog, and other
iteration constructs.)

- The go targets established by a tagbody, named by the tags in the tagbody,

and referred to by go have lexical scope and dynamic extent. (Such go
targets may also appear as tags in the bodies of do, prog, and other iteration
constructs.)

- Named constants such as nil and pi have indefinite scope and indefinite

extent.

The rules of lexical scoping imply that lambda-expressions appearing in the

function construct will, in general, result in “closures” over those non-special
variables visible to the lambda-expression. That 1s, the function represented
by a lambda-expression may refer to any lexically apparent non-special vari-
able and get the correct value, even if the construct that established the
binding has been exited in the course of execution. The compose example
shown earlier in this chapter provides one illustration of this. The rules also
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imply that special variable bindings are not “closed over” as they may be in
certain other dialects of Lisp.

Constructs that use lexical scope effectively generate a new name for each
established entity on each execution. Therefore dynamic shadowing cannot
occur (though lexical shadowing may). This is of particular importance when
dynamic extent is involved. For example:

(defun contorted-example (f g x)
(if (§ x 0)
(funcall £)
(block here
(+ 5 (contorted-example g
#’ (lambda ()
(return-from here 4))

(-x 1))))))

Consider the call (contorted-example nil nil 2). This produces the re-
sult 4. During the course of execution, there are three calls on contorted-
example, interleaved with two establishments of blocks:

(contorted-example nil nil 2)
(block here; ...)
(contorted-example nil #’(lambda () (return-from here; 4)) 1)
(block heresy ...)

(contorted-example #’(lambda () (return-from here; 4))
#’ (lambda () (return-from heres 4))
0)
(funcall £)
where £ = #’(lambda () (return-from here; 4))

(return-from here; 4)

At the time the funcall is executed there are two block exit points out-
standing, each apparently named here. In the trace above, these exit points
are distinguished for expository purposes by subscripts. The return-from
form executed as a result of the funcall operation refers to the outer out-
standing exit point (here;), not the inner one (heres). This is a consequence
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of the rules of lexical scoping: it refers to that exit point textually visible at
the point of execution of the function construct (here abbreviated by the #°
syntax) that resulted in creation of the function object actually invoked by
the funcall.

If, in this example, one were to change the form (funcall £) to (funcall
g), then the value of the call (contorted-example nil nil 2) would be 9.
The value would change because the funcall would cause the execution of
(return-from heres 4), thereby causing a return from the inner exit point
(heres). When that occurs, the value 4 is returned from the middle invocation
of contorted-example, 5 is added to that to get 9, and that value is returned
from the outer block and the outermost call to contorted-example. The
point is that the choice of exit point returned from has nothing to do with
its being innermost or outermost; rather, it depends on the lexical scoping
information that is effectively packaged up with a lambda-expression when
the function construct is executed.

This function contorted-example works only because the function named
by £ is invoked during the extent of the exit point. Block exit points are like
non-special variable bindings in having lexical scope, but they differ in having
dynamic extent rather than indefinite extent. Once the flow of execution has
left the block construct, the exit point is disestablished. For example:

(defun illegal-example ()
(let ((y (block here #’(lambda (z) (return-from here z)))))
(if (numberp y) y (funcall y 5))))

One might expect the call (illegal-example) to produce 5 by the following
incorrect reasoning: the let statement binds the variable y to the value of the
block construct; this value is a function resulting from the lambda-expression.
Because y is not a number, it is invoked on the value 5. The return-from
should then return this value from the exit point named here, thereby exiting
from the block again and giving y the value 5 which, being a number, is then
returned as the value of the call to illegal-example.

The argument fails only because exit points are defined in Common Lisp
to have dynamic extent. The argument is correct up to the execution of the
return—-from. The execution of the return-from is an error, however, not
because it cannot refer to the exit point, but because it does correctly refer
to an exit point and that exit point has been disestablished.



Type Specifiers

In Common Lisp, types are named by Lisp objects, specifically symbols
and lists, called type specifiers. Symbols name predefined classes of objects,
whereas lists usually indicate combinations or specializations of simpler types.
Symbols or lists may also be abbreviations for types that could be specified
in other ways.

4.1. Type Specifier Symbols

The type symbols defined by the system include those shown in table 4-1. In
addition, when a structure type is defined using defstruct, the name of the
structure type becomes a valid type symbol.

Notice of correction. In the first edition, the type specifiers signed-byte
and unsigned-byte were inadvertently omitted from table 4-1.

X3J13 voted in March 1989 {17) to eliminate the type common; this fact is
indicated by the brackets around the common type specifier in the table.

X3J13 voted in March 1989 (11) to eliminate the type string-char; this
fact 1s indicated by the brackets around the string-char type specifier in the
table.

X3J13 voted in March 1989 (11) to add the type extended-character and
the type base-character.

X3J13 voted in March 1989 (151) to add the type specifier real.

X3J13 votes have also implicitly added many other type specifiers as names
of classes (see chapter 28) or of conditions (see chapter 29).

4.2. Type Specifier Lists

If a type specifier 1s a list, the car of the list is a symbol, and the rest of the
list 1s subsidiary type information. In many cases a subsidiary item may be
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Table 4-1: Standard Type Specifier Symbols

array fixnum package simple-string
atom float pathname simple-vector
bignum function random-state single-float
bit hash-table ratio standard-char
bit-vector integer rational stream
character keyword readtable string
[common] list sequence [string-char]
compiled-function long-float short-float symbol
complex nil signed-byte t

cons null simple-array unsigned-byte
double-float number simple-bit-vector vector

X3J13 voted in March 1989 (17) to remove the type common.

X3J13 voted in March 1989 (11) to remove the type string-char.

X3J13 voted in March 1989 (11) to add base-character and extended-character.
X3J13 voted in March 1989 (151) to add the type real.

unspecified. The unspecified subsidiary item is indicated by writing *. For
example, to completely specify a vector type, one must mention the type of
the elements and the length of the vector, as for example

(vector double-float 100)

To leave the length unspecified, one would write

(vector double-float *)

To leave the element type unspecified, one would write
(vector * 100)

One may also leave both length and element type unspecified:
(vector * *)

Suppose that two type specifiers are the same except that the first has a *
where the second has a more explicit specification. Then the second denotes
a subtype of the type denoted by the first.

As a convenience, if a list has one or more unspecified items at the end,
such items may simply be dropped rather than writing an explicit * for each
one. If dropping all occurrences of # results in a singleton list, then the
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parentheses may be dropped as well (the list may be replaced by the sym-
bol in its car). For example, (vector double-float *) may be abbrevi-
ated to (vector double-float), and (vector * *) may be abbreviated to
(vector) and then to simply vector.

4.3. Predicating Type Specifiers

A type specifier list (satisfies predicate-name) denotes the set of all objects
that satisfy the predicate named by predicate-name, which must be a sym-
bol whose global function definition is a one-argument predicate. (A name is
required; lambda-expressions are disallowed in order to avoid scoping prob-
lems.) For example, the type (satisfies numberp) is the same as the type
number. The call (typep x ’(satisfies p)) results in applying p to x and
returning t if the result is true and nil if the result is false.

As an example, the type string-char could be defined as

(deftype string-char ()
’(and character (satisfies string-char-p)))

See deftype.

X3J13 voted in March 1989 (17) to remove the type string-char and the
function string-char-p from the language.

It is not a good idea for a predicate appearing in a satisfies type specifier
to cause any side effects when invoked.

4.4. Type Specifiers That Combine

The following type specifier lists define a type in terms of other types or
objects.

(member object! object? ...)

This denotes the set containing precisely those objects named. An object is
of this type if and only if 1t is eql to one of the specified objects.

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s
memq.

(eql object)
X3J13 voted in June 1988 (12) to add the eql type specifier. It may be used
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as a parameter specializer for CLOS methods (see section 28.1.6.2 and find-
method). It denotes the set of the one object named; an object is of this type
if and only if it 1s eql to object. While (eql object) denotes the same type
as (member object), only (eql object) may be used as a CLOS parameter
specializer.

(not type)
This denotes the set of all those objects that are not of the specified type.

(and typel type2 ...)
This denotes the intersection of the specified types.

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s
allof.

When typep processes an and type specifier, it always tests each of the
component types in order from left to right and stops processing as soon
as one component of the intersection has been found to which the object in
question does not belong. In this respect an and type specifier is similar to an
executable and form. The purpose of this similarity is to allow a satisfies
type specifier to depend on filtering by previous type specifiers. For example,
suppose there were a function primep that takes an integer and says whether
it 1s prime. Suppose also that it is an error to give any object other than an
integer to primep. Then the type specifier

(and integer (satisfies primep))

is guaranteed never to result in an error because the function primep will not
be invoked unless the object in question has already been determined to be
an integer.

(or typel type2 ...)

This denotes the union of the specified types. For example, the type 1ist by
definition is the same as (or null cons). Also, the value returned by the
function position is always of type (or null (integer 0 #*)) (either nil
or a non-negative integer).

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s
oneof.
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As for and, when typep processes an or type specifier, it always tests each
of the component types in order from left to right and stops processing as
soon as one component of the union has been found to which the object in
question belongs.

4.5. Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by sym-
bols. These specializations may be reflected by more efficient representations
in the underlying implementation. As an example, consider the type (array
short-float). Implementation A may choose to provide a specialized rep-
resentation for arrays of short floating-point numbers, and implementation B
may choose not to.

If you should want to create an array for the express purpose of hold-
ing only short-float objects, you may optionally specify to make-array the
element type short-float. This does not require make-array to create an
object of type (array short-float);it merely permitsit. The request is con-
strued to mean “Produce the most specialized array representation capable of
holding short-floats that the implementation can provide.” Implementation
A will then produce a specialized array of type (array short-float), and
implementation B will produce an ordinary array of type (array t).

If one were then to ask whether the array were actually of type (array
short-float), implementation A would say “yes,” but implementation B
would say “no.” This is a property of make-array and similar functions:
what you ask for is not necessarily what you get.

Types can therefore be used for two different purposes: declaration and
discrimination. Declaring to make-array that elements will always be of type
. short-float permits optimization. Similarly, declaring that a variable takes
. on values of type (array short-float) amounts to saying that the variable
. will take on values that might be produced by specifying element type short-
. float to make-array. On the other hand, if the predicate typep is used to
. test whether an object is of type (array short-float), only objects actually
. of that specialized type can satisfy the test; in implementation B no object
: can pass that test.

X3J13 voted in January 1989 (8) to eliminate the differing treatment of
types when used “for discrimination” rather than “for declaration” on the
grounds that implementors have not treated the distinction consistently and
(which is more important) users have found the distinction confusing.

As a consequence of this change, the behavior of typep and subtypep on
array and complex type specifiers must be modified. See the descriptions of
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those functions. In particular, under their new behavior, implementation B
’ agreeing with implementation A, in the discussion above.

Note that the distinction between declaration and discrimination remains
useful, if only so that we may remark that the specialized (list) form of the
function type specifier may still be used only for declaration and not for
discrimination.

X3J13 voted in June 1988 (90) to clarify that while the specialized form of
the function type specifier (a list of the symbol function possibly followed
by argument and value type specifiers) may be used only for declaration, the
symbol form (simply the name function) may be used for discrimination.

would say “yes,’

The valid list-format names for data types are as follows:

(array element-type dimensions)

This denotes the set of specialized arrays whose elements are all members of
the type element-type and whose dimensions match dimensions. For declara-
tion purposes, this type encompasses those arrays that can result by specifying
element-type as the element type to the function make-array; this may be dif-
ferent from what the type means for discrimination purposes. element-type
must be a valid type specifier or unspecified. dimensions may be a non-
negative integer, which i1s the number of dimensions, or it may be a list of
non-negative integers representing the length of each dimension (any dimen-
sion may be unspecified instead), or it may be unspecified. For example:

(array integer 3) ; Three-dimensional arrays of integers

(array integer (* * *)) ; Three-dimensional arrays of integers

(array * (4 5 86)) ; 4-by-b-by-6 arrays

(array character (3 *)) ; Two-dimensional arrays of characters
; that have exactly three rows

(array short-float ()) ; Zero-rank arrays of short-format

; floating-point numbers

Note that (array t) is a proper subset of (array *). The reason is that
(array t) is the set of arrays that can hold any Common Lisp object (the ele-
ments are of type t, which includes all objects). On the other hand, (array *)
is the set of all arrays whatsoever, including, for example, arrays that can hold
only characters. Now (array character) is not a subset of (array t); the
two sets are in fact disjoint because (array character) is not the set of all
arrays that can hold characters but rather the set of arrays that are special-
ized to hold precisely characters and no other objects. To test whether an
array foo can hold a character, one should not use
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(typep foo ’(array character))
but rather
(subtypep ’character (array-element-type foo))

See array-element-type.

X3J13 voted in January 1989 (8) to change typep and subtypep so that
the specialized array type specifier means the same thing for discrimination
as for declaration: it encompasses those arrays that can result by specifying
element-type as the element type to the function make-array. Under this
interpretation (array character) might be the same type as (array t) (al-
though it also might not be the same). See upgraded-array-element-type.
However,

(typep foo ’(array character))

is still not a legitimate test of whether the array foo can hold a character;
one must still say

(subtypep ’character (array-element-type foo))

to determine that question.

X3J13 also voted in January 1989 (43) to specify that within the lexical
scope of an array type declaration, it is an error for an array element, when
referenced, not to be of the exact declared element type. A compiler may,
for example, treat every reference to an element of a declared array as if
the reference were surrounded by a the form mentioning the declared array
element type (not the upgraded array element type). Thus

(defun snarf-hex-digits (the-array)
(declare (type (array (unsigned-byte 4) 1) the-array))
(do ((j (- (length array) 1) (- j 1))
(val 0 (logior (ash val 4)
(aref the-array j))))
((< j 0) val)))

may be treated as
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(defun snarf-hex-digits (the-array)
(declare (type (array (unsigned-byte 4) 1) the-array))
(do ((j (- (length array) 1) (- j 1))
(val 0 (logior (ash val 4)
(the (unsigned-byte 4)
(aref the-array j)))))
((< j 0) val)))

The declaration amounts to a promise by the user that the aref will never
produce a value outside the interval 0 to 15, even if in that particular imple-
mentation the array element type (unsigned-byte 4) is upgraded to, say,
(unsigned-byte 8). If such upgrading does occur, then values outside that
range may in fact be stored in the-array, as long as the code in snarf-hex-
digits never sees them.

As a general rule, a compiler would be justified in transforming

(aref (the (array elt-type ...) a) ...)
into
(the elt-type (aref (the (array elt-type ...) a) ...)

It may also make inferences involving more complex functions, such as
position or find. For example, find applied to an array always returns
either nil or an object whose type is the element type of the array.

(simple-array element-type dimensions)

This is equivalent to (array element-type dimensions) except that it addi-
tionally specifies that objects of the type are simple arrays (see section 2.5).

(vector element-type size)

This denotes the set of specialized one-dimensional arrays whose elements
are all of type element-type and whose lengths match size. This is entirely
equivalent to (array element-type (size)). For example:

(vector double-float) ; Vectors of double-format

; floating-point numbers
(vector * 5) ; Vectors of length 5
(vector t 5) ; General vectors of length 5

(vector (mod 32) *) ; Vectors of integers between 0 and 31
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The specialized types (vector string-char) and (vector bit) are so
! useful that they have the special names string and bit-vector. Every im-
plementation of Common Lisp must provide distinct representations for these
| as distinct specialized data types.

X3J13 voted in March 1989 (11) to eliminate the type string-char and
to redefine the type string to be the union of one or more specialized vector
types, the types of whose elements are subtypes of the type character.

(simple-vector size)

This is the same as (vector t size) except that 1t additionally specifies that
its elements are simple general vectors.

(complex type)

Every element of this type is a complex number whose real part and imaginary
part are each of type type. For declaration purposes, this type encompasses
those complex numbers that can result by giving numbers of the specified type
to the function complex; this may be different from what the type means for
discrimination purposes. As an example, Gaussian integers might be described
as (complex integer), even in implementations where giving two integers to
the function complex results in an object of type (complex rational).
X3J13 voted in January 1989 (8) to change typep and subtypep so that
the specialized complex type specifier means the same thing for discrimination
purposes as for declaration purposes. See upgraded-complex-part-type.

(function (argl-type arg2-type ...) wvalue-type)

This type may be used only for declaration and not for discrimination; typep
will signal an error if it encounters a specifier of this form. Every element of
this type is a function that accepts arguments at least of the types specified
by the argj-type forms and returns a value that is a member of the types
specified by the value-type form. The &optional, &rest, and &key markers
may appear in the list of argument types. The value-type may be a values
type specifier in order to indicate the types of multiple values.

X3J13 voted in January 1989 (93) to specify that the arg-type that follows
a &rest marker indicates the type of each actual argument that would be
gathered into the list for a &rest parameter, and not the type of the &rest
parameter itself (which is always 1ist). Thus one might declare the function
gecd to be of type (function (&rest integer) integer), or the function
aref to be of type (function (array &rest fixnum) t).

X3J13 voted in March 1988 (92) to specify that, in a function type spec-
ifier, an argument type specifier following &key must be a list of two items,
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a keyword and a type specifier. The keyword must be a valid keyword-name
symbol that may be supplied in the actual arguments of a call to the function,
and the type specifier indicates the permitted type of the corresponding argu-
ment value. (The keyword-name symbol is typically a keyword, but another
X3J13 vote (105) allows it to be any symbol.) Furthermore, if £allow-other-
keys 1s not present, the set of keyword-names mentioned in the function type
specifier may be assumed to be exhaustive; for example, a compiler would be
justified in issuing a warning for a function call using a keyword argument
name not mentioned in the type declaration for the function being called. If
&allow—other-keys is present in the function type specifier, other keyword
arguments may be supplied when calling a function of the indicated type, and
if supplied such arguments may possibly be used.

: As an example, the function cons is of type (function (t t) cons), be-
. cause it can accept any two arguments and always returns a cons. The func-
. tion coms is also of type (function (float string) list), because it can
: certainly accept a floating-point number and a string (among other things),
© and its result is always of type 1ist (in fact a cons is never null, but that
: does not matter for this type declaration). The function truncate is of type
(function (number number) (values number number)), as well as of type
(function (integer (mod 8)) integer).

X3J13 voted in January 1989 (91) to alter the meaning of the function
type specifier when used in type and ftype declarations. While the preceding
formulation may be theoretically elegant, they have found that it is not useful
to compiler implementors and that 1t is not the interpretation that users
expect. X3J13 prescribed instead the following interpretation of declarations.

A declaration specifier of the form

(ftype (function (argl-type arg2-type ... argn-type) value-type) fname)
implies that any function call of the form
(fname argl arg? ...)

within the scope of the declaration can be treated as if it were rewritten to
use the-forms in the following manner:

(the wvalue-type
(fname (the argl-type argl)
(the arg2-type arg?)

(the argn-type argn)))
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That 1s, it is an error for any of the actual arguments not to be of its specified

type arg-type or for the result not to be of the specified type value-type. (In

particular, if any argument is not of its specified type, then the result is not

guaranteed to be of the specified type—if indeed a result is returned at all.)
Similarly, a declaration specifier of the form

(type (function (argl-type arg2-type ... argn-type) value-type) wvar)

is interpreted to mean that any reference to the variable var will find that its
value is a function, and that it 1s an error to call this function with any actual
argument not of its specified type arg-type. Also, it is an error for the result
not to be of the specified type value-type. For example, a function call of the
form

(funcall wvar argl arg? ...)

could be rewritten to use the-forms as well. If any argument is not of its
specified type, then the result is not guaranteed to be of the specified type—if
indeed a result is returned at all.

Thus, a type or ftype declaration specifier describes type requirements
imposed on calls to a function as opposed to requirements imposed on the
definition of the function. This is analogous to the treatment of type decla-
rations of variables as imposing type requirements on references to variables,
rather than on the contents of variables. See the vote of X3J13 on type
declaration specifiers in general, discussed in section 9.2.

In the same manner as for variable type declarations in general, if two or
more of these declarations apply to the same function call (which can occur if
declaration scopes are suitably nested), then they all apply; in effect, the types
for each argument or result are intersected. For example, the code fragment

(locally (declare (ftype (function (biped) digit)
butcher-fudge))
(locally (declare (ftype (function (featherless) opposable)
butcher-fudge))
(butcher-fudge sam)))

may be regarded as equivalent to

(the opposable
(the digit (butcher-fudge (the featherless
(the biped sam)))))
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or to

(the (and opposable digit)
(butcher-fudge (the (and featherless biped) sam)))

That is, sam had better be both featherless and a biped, and the result
of butcher-fudge had better be both opposable and a digit; otherwise the
code is in error. Therefore a compiler may generate code that relies on these
type assumptions, for example.

(values valuei-type valuel-type ...)

This type specifier 1s extremely restricted: it may be used only as the value-
type in a function type specifier or in a the special form. It is used to specify
individual types when multiple values are involved. The &optional, &rest,
and &key markers may appear in the value-type list; they thereby indicate the
parameter list of a function that, when given to multiple-value-call along
with the values, would be suitable for receiving those values.

4.6. Type Specifiers That Abbreviate

The following type specifiers are, for the most part, abbreviations for other
type specifiers that would be far too verbose to write out explicitly (using, for
example, member).

(integer low high)

Denotes the integers between low and high. The limits low and high must each
be an integer, a list of an integer, or unspecified. An integer is an inclusive
limit, a list of an integer is an exclusive limit, and * means that a limit does not
exist and so effectively denotes minus or plus infinity, respectively. The type
fixnum is simply a name for (integer smallest largest) for implementation-
dependent values of smallest and largest (see most-negative-fixnum and
most-positive-fixnum). The type (integer 0 1) is so useful that it has
the special name bit.

(mod n)

Denotes the set of non-negative integers less than n. This 1s equivalent to
(integer 0 n—1) or to (integer 0 (n)).

(signed-byte s)

Denotes the set of integers that can be represented in two’s-complement form
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in a byte of s bits. This is equivalent to (integer —2°7! 2571—1). Simply
signed-byte or (signed-byte *) is the same as integer.

(unsigned-byte s)

Denotes the set of non-negative integers that can be represented in a byte of
s bits. This is equivalent to (mod 2°), that is, (integer 0 2°—1). Simply
unsigned-byte or (unsigned-byte #) is the same as (integer 0 *), the
set of non-negative integers.

(rational low high)

Denotes the rationals between low and high. The limits low and high must
each be a rational, a list of a rational, or unspecified. A rational is an inclusive
limit, a list of a rational 1s an exclusive limit, and * means that a limit does
not exist and so effectively denotes minus or plus infinity, respectively.

(float low high)

Denotes the set of floating-point numbers between low and high. The limits
low and high must each be a floating-point number, a list of a floating-point
number, or unspecified; a floating-point number is an inclusive limit, a list of
a floating-point number 1s an exclusive limit, and * means that a limit does
not exist and so effectively denotes minus or plus infinity, respectively.

In a similar manner, one may use:

(short-float low high)
(single-float low high)
(double-float low high)
(long-float low high)

In this case, if a limit is a floating-point number (or a list of one), it must be
one of the appropriate format.

X3J13 voted in March 1989 (151) to add a list form of the real type specifier
to denote an interval of real numbers.

(real low high)

Denotes the real numbers between low and high. The limits low and high must
each be a real, a list of a real, or unspecified. A real is an inclusive limit, a
list of a real 1s an exclusive limit, and * means that a limit does not exist and
so effectively denotes minus or plus infinity, respectively.
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(string size)

Means the same as (array string-char (size)): the set of strings of the
© indicated size.

(simple-string size)
: Means the same as (simple-array string-char (size)): the set of simple
. strings of the indicated size.

X3J13 voted in March 1989 (11) to eliminate the type string-char and
to redefine the type string to be the union of one or more specialized vector
types, the types of whose elements are subtypes of the type character. Sim-
ilarly, the type simple-string is redefined to be the union of one or more
specialized simple vector types, the types of whose elements are subtypes of
the type character.

(base-string size)

Means the same as (vector base-character size): the set of base strings
of the indicated size.

(simple-base-string size)
Means the same as (simple-array base-character (size)): the set of sim-
ple base strings of the indicated size.

(bit-vector size)

Means the same as (array bit (size)): the set of bit-vectors of the indicated
size.

(simple-bit-vector size)

This means the same as (simple-array bit (size)): the set of bit-vectors
of the indicated size.

4.7. Defining New Type Specifiers

New type specifiers can come into existence in two ways. First, defining a new
structure type with defstruct automatically causes the name of the structure
to be a new type specifier symbol. Second, the deftype special form can be
used to define new type-specifier abbreviations.
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deftype name lambda-list [ {declaration}* | doc-string] { form}* [Macro)

This is very similar to a defmacro form: name is the symbol that identifies
the type specifier being defined, lambda-list is a lambda-list (and may contain
&optional and &rest markers), and the forms constitute the body of the
expander function. If we view a type specifier list as a list containing the type
specifier name and some argument forms, the argument forms (unevaluated)
are bound to the corresponding parameters in lambda-list. Then the body
forms are evaluated as an implicit progn, and the value of the last form is
interpreted as a new type specifier for which the original specifier was an
abbreviation. The name is returned as the value of the deftype form.

deftype differs from defmacro in that if no initform is specified for an
&optional parameter, the default value is *, not nil.

If the optional documentation string doc-stringis present, then it 1s attached
to the name as a documentation string of type type; see documentation.

Here are some examples of the use of deftype:

(deftype mod (n) ‘(integer 0 (,n)))

(deftype list () ’(or null cons))

(deftype square-matrix (&optional type size)
"SQUARE-MATRIX includes all square two-dimensional arrays."
‘(array ,type (,size ,size)))

(square-matrix short-float 7) means (array short-float (7 7))

(square-matrix bit) means (array bit (% *))

If the type name defined by deftype is used simply as a type specifier symbol,
it 1s interpreted as a type specifier list with no argument forms. Thus, in the
example above, square-matrix would mean (array * (* *)) the set of two-
dimensional arrays. This would unfortunately fail to convey the constraint
that the two dimensions be the same; (square-matrix bit) has the same
problem. A better definition 1s

(defun equidimensional (a)
(or (< (array-rank a) 2)
(apply #’Y (array-dimensions a))))

(deftype square-matrix (&optional type size)
‘(and (array ,type (,size ,size))
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(satisfies equidimensional)))

X3J13 voted in March 1988 (78) to specify that the body of the expander
function defined by deftype is implicitly enclosed in a block construct whose
name is the same as the name of the defined type. Therefore return-from
may be used to exit from the function.

X3J13 voted in March 1989 (50) to clarify that, while defining forms nor-
mally appear at top level, it is meaningful to place them in non-top-level
contexts; deftype must define the expander function within the enclosing
lexical environment, not within the global environment.

4.8. Type Conversion Function

The following function may be used to convert an object to an equivalent
object of another type.

coerce object result-type [Function)

The result-type must be a type specifier; the object is converted to an “equiv-
alent” object of the specified type. If the coercion cannot be performed, then
an error is signaled. In particular, (coerce x ’nil) always signals an error.
If object i1s already of the specified type, as determined by typep, then it is
simply returned. It is not generally possible to convert any object to be of
any type whatsoever; only certain conversions are permitted:

- Any sequence type may be converted to any other sequence type, provided
the new sequence can contain all actual elements of the old sequence (it is
an error if it cannot). If the result-type is specified as simply array, for
example, then (array t) is assumed. A specialized type such as string or
(vector (complex short-float)) may be specified; of course, the result
may be of either that type or some more general type, as determined by the
implementation. Elements of the new sequence will be eql to corresponding
elements of the old sequence. If the sequence is already of the specified
type, it may be returned without copying it; in this, (coerce sequence
type) differs from (concatenate type sequence), for the latter is required
to copy the argument sequence. In particular, if one specifies sequence,
then the argument may simply be returned if it already is a sequence.

(coerce ’(a b c) ’vector) = #(a b c)
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X3J13 voted in June 1989 (158) to specify that coerce should signal an
error if the new sequence type specifies the number of elements and the old
sequence has a different length.

X3J13 voted in March 1989 (11) to specify that if the result-type is string
then it is understood to mean (vector character), and simple-string is
understood to mean (simple-array character (*)).

- Some strings, symbols, and integers may be converted to characters. If
object is a string of length 1, then the sole element of the string is returned.
If object 1s a symbol whose print name is of length 1, then the sole element
of the print name is returned. If object is an integer n, then (int-char n)
is returned. See character.

(coerce "a'" ’character) = #\a

X3J13 voted in March 1989 (11) to eliminate int-char from Common Lisp.
Presumably this eliminates the possibility of coercing an integer to a character,
although the vote did not address this question directly.

- Any non-complex number can be converted to a short-float, single-
float, double-float, or long-float. If simply float is specified, and
object is not already a float of some kind, then the object is converted to
a single-float.

(coerce 0 ’short-float) = 0.0S0
(coerce 3.5L0 ’float) = 3.5L0
(coerce 7/2 ’float) = 3.5

« Any number can be converted to a complex number. If the number is not
already complex, then a zero imaginary part is provided by coercing the
integer zero to the type of the given real part. (If the given real part is
rational, however, then the rule of canonical representation for complex
rationals will result in the immediate re-conversion of the result from type
complex back to type rational.)

(coerce 4.5s0 ’complex) = #C(4.5S0 0.0S0)

(coerce 7/2 ’complex) = 7/2

(coerce #C(7/2 0) ’(complex double-float))
= #C(3.5D0 0.0DO)

« Any object may be coerced to type t.

(coerce x ’t) = (identity x) = x
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X3J13 voted in June 1988 (90) to allow coercion of certain objects to the
type function:

+ A symbol or lambda-expression can be converted to a function. A symbol
is coerced to type function as if by applying symbol-function to the
symbol; an error is signaled if the predicate fboundp i1s not true of the
symbol or if the symbol names a macro or special form. A list x whose car
is the symbol lambda is coerced to a function as if by execution of (eval
‘#,1), that is, of (eval (list ’function z)).

Coercions from floating-point numbers to rationals and from ratios to in-
tegers are purposely not provided because of rounding problems. The func-
tions rational, rationalize, floor, ceiling, truncate, and round may be
used for such purposes. Similarly, coercions from characters to integers are
purposely not provided; char-code or char-int may be used explicitly to
perform such conversions.

4.9. Determining the Type of an Object

The following function may be used to obtain a type specifier describing the
type of a given object.

type-of object [Function)

. (type-of object) returns an implementation-dependent result: some type of
- which the object is a member. Implementors are encouraged to arrange for
. type-of to return the most specific type that can be conveniently computed
. and is likely to be useful to the user. If the argument is a user-defined named
o structure created by defstruct, then type-of will return the type name of
o that structure. Because the result is implementation-dependent, it is usually
. better to use type-of primarily for debugging purposes; however, in a few
. situations portable code requires the use of type-of, such as when the result
. is to be given to the coerce or map function. On the other hand, often the
- typep function or the typecase construct is more appropriate than type-of.

Compatibility note: In MacLisp the function type-ofis called typep, and anoma-
lously so, for it is not a predicate.

Many have observed (and rightly so) that this specification is totally wimpy
and therefore nearly useless. X3J13 voted in June 1989 (179) to place the
following constraints on type-of:
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- Let z be an object such that (typep z type) is true and type is one of the
following:

array float package sequence
bit-vector function pathname short—-float
character hash-table random-state single-float
complex integer ratio stream
condition long-float rational string

cons null readtable symbol
double-float number restart vector

Then (subtypep (type-of z) type)) must return the values t and t; that
is, type-of applied to z must return either type itself or a subtype of type
that subtypep can recognize in that implementation.

- For any object z, (subtypep (type-of z) (class-of z)) must produce
the values t and t.

« For every object z, (typep # (type-of z)) must be true. (This implies
that type—of can never return nil, for no object is of type nil.)

- type-of never returns t and never uses a satisfies, and, or, not, or
values type specifier in its result.

- For objects of CLOS metaclass structure-class or of standard-class,
type-of returns the proper name of the class returned by class-of if it has
a proper name, and otherwise returns the class itself. In particular, for any
object created by a defstruct constructor function, where the defstruct
had the name name and no :type option, type—of will return name.

As an example, (type-of "acetylcholinesterase'") may return string
or simple-string or (simple-string 20), but not array or simple-
vector. As another example, it is permitted for (type-of 1729) to re-
turn integer or fixnum (if it is indeed a fixnum) or (signed-byte 16) or
(integer 1729 1729) or (integer 1685 1750) or even (mod 1730), but
not rational or number, because

(typep (+ (expt 9 3) (expt 10 3)) ’integer)
is true, integer is in the list of types mentioned above, and
(subtypep (type-of (+ (expt 1 3) (expt 12 3))) ’integer)

would be false if type-of were to return rational or number.
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4.10. Type Upgrading

X3J13 voted in January 1989 (8) to add new functions by which a program can
determine, in a given Common Lisp implementation, how that implementation
will upgrade a type when constructing an array specialized to contain elements
of that type, or a complex number specialized to contain parts of that type.

upgraded-array-element-type type [Function)

A type specifier 1s returned, indicating the element type of the most specialized
array representation capable of holding items of the specified argument type.
The result is necessarily a supertype of the given type. Furthermore, if a
type A is a subtype of type B, then (upgraded-array-element-type A) is
a subtype of (upgraded-array-element-type B).

The manner in which an array element type is upgraded depends only on
the element type as such and not on any other property of the array such as
size, rank, adjustability, presence or absence of a fill pointer, or displacement.

Rationale: If upgrading were allowed to depend on any of these properties, all of
which can be referred to, directly or indirectly, in the language of type specifiers, then
it would not be possible to displace an array in a consistent and dependable manner
to another array created with the same :element-type argument but differing in
one of these properties.

Note that upgraded-array-element-type could be defined as

(defun upgraded-array-element-type (type)
(array-element-type (make-array O :element-type type)))

but this definition has the disadvantage of allocating an array and then im-
mediately discarding it. The clever implementor surely can conjure up a more
practical approach.

upgraded-complex-part-type type [Function)

A type specifier is returned, indicating the element type of the most special-
ized complex number representation capable of having parts of the specified
argument type. The result is necessarily a supertype of the given type. Further-
more, if a type A is a subtype of type B, then (upgraded-complex-part-type
A) is a subtype of (upgraded-complex-part-type B).



Program Structure

In chapter 2 the syntax was sketched for notating data objects in Common
Lisp. The same syntax 1s used for notating programs because all Common
Lisp programs have a representation as Common Lisp data objects.

Lisp programs are organized as forms and functions. Forms are evaluated
(relative to some context) to produce values and side effects. Functions are
invoked by applying them to arguments. The most important kind of form
performs a function call; conversely, a function performs computation by eval-
uating forms.

In this chapter, forms are discussed first and then functions. Finally, certain
“top level” special forms are discussed; the most important of these is defun,
whose purpose is to define a named function.

5.1. Forms

The standard unit of interaction with a Common Lisp implementation is the
form, which is simply a data object meant to be evaluated as a program to
produce one or more values (which are also data objects). One may request
evaluation of any data object, but only certain ones are meaningful. For
instance, symbols and lists are meaningful forms, while arrays normally are
not. Examples of meaningful forms are 3, whose value is 3, and (+ 3 4),
whose value is 7. We write 3 = 3 and (+ 3 4) = 7 to indicate these facts.
(= means “evaluates to.”)

Meaningful forms may be divided into three categories: self-evaluating
forms, such as numbers; symbols, which stand for variables; and lists. The
lists in turn may be divided into three categories: special forms, macro calls,
and function calls.

: Any Common Lisp data object not explicitly defined here to be a valid form
. is not a valid form. It is an error to evaluate anything but a valid form.

73
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© Implementation note: An implementation is free to make implementation-
. dependent extensions to the evaluator but is strongly encouraged to signal an error
on any attempt to evaluate anything but a valid form or an object for which a
meaningful evaluation extension has been purposely defined.

X3J13 voted in October 1988 (72) to specify that all standard Common Lisp
data objects other than symbols and lists (including defstruct structures
defined without the :type option) are self-evaluating.

5.1.1. Self-Evaluating Forms

All numbers, characters, strings, and bit-vectors are self-evaluating forms.
When such an object is evaluated, that object (or possibly a copy in the case
of numbers or characters) is returned as the value of the form. The empty list
(), which is also the false value nil, is also a self-evaluating form: the value
of nil is nil. Keywords (symbols written with a leading colon) also evaluate
to themselves: the value of :start is :start.

X3J13 voted in January 1989 (36) to clarify that it is an error to de-
structively modify any object that appears as a constant in executable code,
whether as a self-evaluating form or within a quote special form.

5.1.2. Variables

Symbols are used as names of variables in Common Lisp programs. When a
symbol 1s evaluated as a form, the value of the variable it names is produced.
For example, after doing (setq items 3), which assigns the value 3 to the
variable named items, then items = 3. Variables can be assigned to, as
by setq, or bound, as by let. Any program construct that binds a variable
effectively saves the old value of the variable and causes it to have a new value,
and on exit from the construct the old value is reinstated.

There are actually two kinds of variables in Common Lisp, called lezical (or
static) variables and special (or dynamic) variables. At any given time either
or both kinds of variable with the same name may have a current value. Which
of the two kinds of variable 1s referred to when a symbol is evaluated depends
on the context of the evaluation. The general rule is that if the symbol occurs
textually within a program construct that creates a binding for a variable of
the same name, then the reference is to the variable specified by the binding;
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if no such program construct textually contains the reference, then it is taken
to refer to the special variable of that name.

The distinction between the two kinds of variable is one of scope and ex-
tent. A lexically bound variable can be referred to only by forms occurring
at any place textually within the program construct that binds the variable.
A dynamically bound (special) variable can be referred to at any time from
the time the binding is made until the time evaluation of the construct that
binds the variable terminates. Therefore lexical binding of variables imposes a
spatial limitation on occurrences of references (but no temporal limitation, for
the binding continues to exist as long as the possibility of reference remains).
Conversely, dynamic binding of variables imposes a temporal limitation on
occurrences of references (but no spatial limitation). For more information on
scope and extent, see chapter 3.

The value a special variable has when there are currently no bindings of that
variable is called the global value of the (special) variable. A global value can
be given to a variable only by assignment, because a value given by binding
is by definition not global.

It is possible for a special variable to have no value at all, in which case
it 1s said to be unbound. By default, every global variable is unbound unless
and until explicitly assigned a value, except for those global variables defined
in this book or by the implementation already to have values when the Lisp
system 1s first started. It is also possible to establish a binding of a special
variable and then cause that binding to be valueless by using the function
makunbound. In this situation the variable is also said to be “unbound,”
although this is a misnomer; precisely speaking, it is bound but valueless. Tt
is an error to refer to a variable that is unbound.

X3J13 voted in June 1989 (180) to specify more precisely the effects of
referring to an unbound variable.

Reading an unbound variable or an undefined function must be detected in
the highest safety setting (see the safety quality of the optimize declaration
specifier) but the effect is undefined in any other safety setting. That is, read-
ing an unbound variable should signal an error and reading an undefined func-
tion should signal an error. (“Reading a function” includes both references
to the function using the function special form, such as £ in (function £),
and references to the function in a call, such as £ in (f x y).)

For the case of inline functions (in implementations where they are sup-
ported), a permitted point of view is that performing the inlining constitutes
the read of the function, so that an £boundp check need not be done at execu-
tion time. Put another way, the effect of the application of fmakunbound to a
function name on potentially inlined references to that function is undefined.



76 COMMON LISP

When an unbound variable is detected an error of type unbound-variable
is signaled, and the name slot of the unbound-variable condition is initialized
to the name of the offending variable.

When an undefined function is detected an error of type undefined-
functionis signaled, and the name slot of the undefined-function condition
is initialized to the name of the offending function.

The condition type unbound-slot, which inherits from cell-error, has
an additional slot instance, which can be initialized using the :instance
keyword to make-condition. The function unbound-slot—instance accesses
this slot.

The type of error signaled by the default primary method for the CLOS
slot—unbound generic function is unbound-slot. The instance slot of the
unbound-slot condition is initialized to the offending instance and the name
slot 1s initialized to the name of the offending variable.

Certain global variables are reserved as “named constants.” They have a
global value and may not be bound or assigned to. For example, the symbols
t and nil are reserved. One may not assign a value to t or nil, and one may
not bind t or nil. The global value of t is always t, and the global value of
nil is always nil. Constant symbols defined by defconstant also become
reserved and may not be further assigned to or bound (although they may
be redefined, if necessary, by using defconstant again). Keyword symbols,
which are notated with a leading colon, are reserved and may never be assigned
to or bound; a keyword always evaluates to itself.

5.1.3. Special Forms

If a list is to be evaluated as a form, the first step is to examine the first
element of the list. If the first element is one of the symbols appearing in
table 5-1, then the list is called a special form. (This use of the word “special”
is unrelated to its use in the phrase “special variable.”)

Special forms are generally environment and control constructs. Every spe-
cial form has its own idiosyncratic syntax. An example is the if special form:
(if p (+ x 4) 5) in Common Lisp means what “if p then z+4 else 5”
means in Algol.

The evaluation of a special form normally produces a value or values, but
the evaluation may instead call for a non-local exit; see return-from, go, and
throw.

The set of special forms is fixed in Common Lisp; no way is provided for the
user to define more. The user can create new syntactic constructs, however,
by defining macros.
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Table 5-1: Names of All Common Lisp Special Forms

block if progv

catch labels quote
[compiler-let] let return-from
declare letx* setq

eval-when macrolet tagbody

flet nultiple-value-call the

function multiple-value-progl throw

go progn unwind-protect

X3J13 voted in June 1989 (25) to remove compiler-1let from the language.

X3J13 voted in June 1988 (12) to add the special forms generic-flet, generic-
labels, symbol-macrolet, and with-added-methods.

X3J13 voted in March 1989 (113) to make locally a special form rather than a
macro.

X3J13 voted in March 1989 (111) to add the special form load-time-eval.

The set of special forms in Common Lisp 1s purposely kept very small be-
cause any program-analyzing program must have special knowledge about
every type of special form. Such a program needs no special knowledge about
macros because it is simple to expand the macro and operate on the result-
ing expansion. (This is not to say that many such programs, particularly
compilers, will not have such special knowledge. A compiler may be able to
produce much better code if it recognizes such constructs as typecase and
multiple-value-bind and gives them customized treatment.)

An implementation is free to implement as a macro any construct described
herein as a special form. Conversely, an implementation is free to implement as
a special form any construct described herein as a macro if an equivalent macro
definition 1s also provided. The practical consequence is that the predicates
macro-function and special-form—p may both be true of the same symbol.
It is recommended that a program-analyzing program process a form that is
a list whose car 1s a symbol as follows:

1. If the program has particular knowledge about the symbol, process the form
using special-purpose code. All of the symbols listed in table 5-1 should fall
into this category.

2. Otherwise, if macro-function is true of the symbol, apply either
macroexpand or macroexpand-1, as appropriate, to the entire form and
then start over.
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3. Otherwise, assume it is a function call.

5.1.4. Macros

If a form is a list and the first element is not the name of a special form,
it may be the name of a macro; if so, the form is said to be a macro call.
A macro is essentially a function from forms to forms that will, given a call
to that macro, compute a new form to be evaluated in place of the macro
call. (This computation is sometimes referred to as macro expansion.) For
example, the macro named return will take a form such as (return x) and
from that form compute a new form (return-from nil x). We say that the
old form expands into the new form. The new form 1s then evaluated in place
of the original form; the value of the new form is returned as the value of the
original form.

X3J13 voted in January 1989 (67) to clarify that macro calls, and subforms
of macro calls, need not be proper lists, but that use of dotted forms requires
the macro definition to use “. wvar” or “&rest wvar” in order to match them
properly. It is then the responsibility of the macro definition to recognize and
appropriately handle such dotted forms or subforms.

There are a number of standard macros in Common Lisp, and the user can
define more by using defmacro.

Macros provided by a Common Lisp implementation as described herein
may expand into code that is not portable among differing implementations.
That is, a macro call may be implementation-independent because the macro
1s defined in this book, but the expansion need not be.

Implementation note: Implementors are encouraged to implement the macros
defined in this book, as far as is possible, in such a way that the expansion will
not contain any implementation-dependent special forms, nor contain as forms data
objects that are not considered to be forms in Common Lisp. The purpose of
this restriction is to ensure that the expansion can be processed by a program-
analyzing program in an implementation-independent manner. There is no problem
with a macro expansion containing calls to implementation-dependent functions.
This restriction 1s not a requirement of Common Lisp; it is recognized that certain
complex macros may be able to expand into significantly more efficient code in
certain implementations by using implementation-dependent special forms in the
macro expansion.
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5.1.5. Function Calls

If a list 1s to be evaluated as a form and the first element is not a symbol that
names a special form or macro, then the list is assumed to be a function call.
The first element of the list is taken to name a function. Any and all remaining
elements of the list are forms to be evaluated; one value is obtained from each
form, and these values become the arguments to the function. The function is
then applied to the arguments. The functional computation normally produces
a value, but it may instead call for a non-local exit; see throw. A function
that does return may produce no value or several values; see values. If and
when the function returns, whatever values it returns become the values of
the function-call form.

For example, consider the evaluation of the form (+ 3 (* 4 5)). The
symbol + names the addition function, not a special form or macro. Therefore
the two forms 3 and (* 4 5) are evaluated to produce arguments. The form
3 evaluates to 3, and the form (* 4 5) is a function call (to the multiplication
function). Therefore the forms 4 and 5 are evaluated, producing arguments
4 and 5 for the multiplication. The multiplication function calculates the
number 20 and returns it. The values 3 and 20 are then given as arguments to
the addition function, which calculates and returns the number 23. Therefore
we say (+ 3 (¥ 4 5)) = 23.

X3J13 voted in October 1988 (86) to clarify that while the arguments in
a function call are always evaluated in strict left-to-right order, whether the
function to be called is determined before or after argument evaluation is
unspecified. Programs are in error that rely on a particular order of evaluation
of the first element of a function call relative to the argument forms.

5.2. Functions

There are two ways to indicate a function to be used in a function-call form.
One is to use a symbol that names the function. This use of symbols to
name functions is completely independent of their use in naming special and
lexical variables. The other way is to use a lambda-expression, which is a
list whose first element 1s the symbol lambda. A lambda-expression is not a
form; it cannot be meaningfully evaluated. Lambda-expressions and symbols,
when used in programs as names of functions, can appear only as the first
element of a function-call form, or as the second element of the function
special form. Note that symbols and lambda-expressions are treated as names
of functions in these two contexts. This should be distinguished from the
treatment of symbols and lambda-expressions as function objects, that is,
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objects that satisfy the predicate functionp, as when giving such an object
to apply or funcall to be invoked.

5.2.1. Named Functions

A name can be given to a function in one of two ways. A global name can be
given to a function by using the defun construct. A local name can be given
to a function by using the flet or labels special form. When a function
i1s named, a lambda-expression is effectively associated with that name along
with information about the entities that are lexically apparent at that point.
If a symbol appears as the first element of a function-call form, then 1t refers
to the definition established by the innermost flet or labels construct that
textually contains the reference, or to the global definition (if any) if there is
no such containing construct.

5.2.2. Lambda-Expressions
A lambda-expression is a list with the following syntax:
(lambda lambda-list . body)

The first element must be the symbol 1lambda. The second element must be a
list. It 1s called the lambda-list, and specifies names for the parameters of the
function. When the function denoted by the lambda-expression is applied to
arguments, the arguments are matched with the parameters specified by the
lambda-list. The body may then refer to the arguments by using the parameter
names. The body consists of any number of forms (possibly zero). These forms
are evaluated in sequence, and the results of the last form only are returned
as the results of the application (the value nil is returned if there are zero
forms in the body). The complete syntax of a lambda-expression is:

(lambda ( {var}*
[optional {war | (var [initform [svar]])}*]
[¢rest var]
[&key {var | ({var | Ckeyword var)} [initform [svar]])}”]
[gaux {var | Cvar [initform])}*])
[ {declaration}* | documentation-string ]

{form}~)
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Each element of a lambda-list is either a parameter specifier or a lambda-
list keyword, lambda-list keywords begin with &. (Note that lambda-list key-
words are not keywords in the usual sense; they do not belong to the keyword
package. They are ordinary symbols each of whose names begins with an
ampersand. This terminology is unfortunately confusing but is retained for
historical reasons.)

In all cases a var or svar must be a symbol, the name of a variable; each
. keyword must be a keyword symbol, such as :start. An initform may be any
. form.

X3J13 voted in March 1988 (105) to allow a keyword in the preceding spec-
ification of a lambda-list to be any symbol whatsoever, not just a keyword
symbol in the keyword package. See below.

A lambda-list has five parts, any or all of which may be empty:

- Specifiers for the required parameters. These are all the parameter specifiers
up to the first lambda-list keyword; if there is no such lambda-list keyword,
then all the specifiers are for required parameters.

- Specifiers for optional parameters. If the lambda-list keyword &optional is
present, the optional parameter specifiers are those following the lambda-
list keyword &optional up to the next lambda-list keyword or the end of
the list.

A specifier for a rest parameter. The lambda-list keyword &rest, if present,
must be followed by a single rest parameter specifier, which in turn must
be followed by another lambda-list keyword or the end of the lambda-list.

- Specifiers for keyword parameters. If the lambda-list keyword &key is
present, all specifiers up to the next lambda-list keyword or the end of the
list are keyword parameter specifiers. The keyword parameter specifiers may
optionally be followed by the lambda-list keyword &allow-other-keys.

- Specifiers for auz variables. These are not really parameters. If the lambda-
list keyword &key is present, all specifiers after it are auziliary variable
specifiers.

When the function represented by the lambda-expression is applied to argu-
ments, the arguments and parameters are processed in order from left to right.
In the simplest case, only required parameters are present in the lambda-list;
each is specified simply by a name var for the parameter variable. When
the function is applied, there must be exactly as many arguments as there
are parameters, and each parameter is bound to one argument. Here, and in
general, the parameter 1s bound as a lexical variable unless a declaration has
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been made that it should be a special binding; see defvar, proclaim, and
declare.

In the more general case, if there are nrequired parameters (n may be zero),
there must be at least n arguments, and the required parameters are bound
to the first n arguments. The other parameters are then processed using any
remaining arguments.

If optional parameters are specified, then each one is processed as follows. If
any unprocessed arguments remain, then the parameter variable varis bound
to the next remaining argument, just as for a required parameter. If no
arguments remain, however, then the initform part of the parameter specifier
is evaluated, and the parameter variable is bound to the resulting value (or
to nil if no initform appears in the parameter specifier). If another variable
name svar appears in the specifier, 1t is bound to true if an argument was
available, and to false if no argument remained (and therefore initform had to
be evaluated). The variable svar is called a supplied-p parameter; it is bound
not to an argument but to a value indicating whether or not an argument had
been supplied for another parameter.

After all optional parameter specifiers have been processed, then there may
or may not be a rest parameter. If there is a rest parameter, it is bound to a list
of all as-yet-unprocessed arguments. (If no unprocessed arguments remain,
the rest parameter is bound to the empty list.) If there is no rest parameter
and there are no keyword parameters, then there should be no unprocessed
arguments (it is an error if there are).

X3J13 voted in January 1989 (155) to clarify that if a function has a rest
parameter and is called using apply, then the list to which the rest parameter
i1s bound is permitted, but not required, to share top-level list structure with
the list that was the last argument to apply. Programmers should be careful
about performing side effects on the top-level list structure of a rest parameter.

This was the result of a rather long discussion within X3J13 and the wider
Lisp community. To set it in its historical context, I must remark that in Lisp
Machine Lisp the list to which a rest parameter was bound had only dynamic
extent; this in conjunction with the technique of “cdr-coding” permitted a
clever stack-allocation technique with very low overhead. However, the early
designers of Common Lisp, after a great deal of debate, concluded that it was
dangerous for cons cells to have dynamic extent; as an example, the “obvious”
definition of the function list

(defun list (&rest x) x)

could fail catastrophically. Therefore the first edition simply implied that
the list for a rest parameter, like all other lists, would have indefinite extent.
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This still left open the flip side of the question, namely, Is the list for a rest
parameter guaranteed fresh? This is the question addressed by the X3J13
vote. If it is always freshly consed, then it is permissible to destroy it, for
example by giving it to nconc. However, the requirement always to cons fresh
lists could impose an unacceptable overhead in many implementations. The
clarification approved by X3J13 specifies that the programmer may not rely
on the list being fresh; if the function was called using apply, there is no way
to know where the list came from.

Next, any keyword parameters are processed. For this purpose the same
arguments are processed that would be made into a list for a rest parameter.
(Indeed, it is permitted to specify both &rest and &key. In this case the
remaining arguments are used for both purposes; that is, all remaining argu-
ments are made into a list for the &rest parameter and are also processed
for the &key parameters. This is the only situation in which an argument is
used in the processing of more than one parameter specifier.) If &key is spec-
ified, there must remain an even number of arguments; these are considered
as pairs, the first argument in each pair being interpreted as a keyword name
and the second as the corresponding value.

It is an error for the first object of each pair to be anything but a keyword.

Rationale: This last restriction is imposed so that a compiler may issue warnings
about certain malformed calls to functions that take keyword arguments. It must
. be remembered that the arguments in a function call that evaluate to keywords are
. just like any other arguments and may be any evaluable forms. A compiler could
not, without additional context, issue a warning about the call

(fill seq item x y)

because in principle the variable x might have as its value a keyword such as :start.
However, a compiler would be justified in issuing a warning about the call

(£i111 seq item O 10)

because the constant 0 is definitely not a keyword. Similarly, if in the first case the
variable x had been declared to be of type integer, then type analysis could enable
the compiler to justify a warning.

X3J13 voted in March 1988 {105) to allow a keyword in a lambda-list to be
any symbol whatsoever, not just a keyword symbol in the keyword package.
If, after &key, a variable appears alone or within only one set of parentheses
(possibly with an initform and a svar), then the behavior is as before: a
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keyword symbol with the same name as the variable i1s used as the keyword-
name when matching arguments to parameter specifiers. Only a parameter
specifier of the form ((keyword var) ...) can cause the keyword-name not
to be a keyword symbol, by specifying a symbol not in the keyword package
as the keyword. For example:

(defun wager (&key ((secret password) nil) amount)
(format nil "You A $~D"
(if (eq password ’joe-sent-me) "win" "lose")
amount))

(wager :amount 100) = "You lose $100"
(wager :amount 100 ’secret ’joe-sent-me) = "You win $100"

The secret word could be made even more secret in this example by placing
it in some other obscure package, so that one would have to write

(wager :amount 100 ’obscure:secret ’joe-sent-me) = "You win $100"

to win anything.

In each keyword parameter specifier must be a name var for the parameter
variable. If an explicit keyword is specified, then that is the keyword name for
the parameter. Otherwise the name var serves to indicate the keyword name,
in that a keyword with the same name (in the keyword package) is used as
the keyword. Thus

(defun foo (&key radix (type ’integer)) ...)
means exactly the same as
(defun foo (&key ((:radix radix)) ((:type type) ’integer)) ...)

The keyword parameter specifiers are, like all parameter specifiers, effectively
processed from left to right. For each keyword parameter specifier, if there is
an argument pair whose keyword name matches that specifier’s keyword name
(that is, the names are eq), then the parameter variable for that specifier is
bound to the second item (the value) of that argument pair. If more than one
such argument pair matches, it is not an error; the leftmost argument pair is
used. If no such argument pair exists, then the nitform for that specifier is
evaluated and the parameter variable is bound to that value (or to nil if no
initform was specified). The variable svar is treated as for ordinary optional
parameters: it 18 bound to true if there was a matching argument pair, and
to false otherwise.



PROGRAM STRUCTURE 85

It is an error if an argument pair has a keyword name not matched by any
parameter specifier, unless at least one of the following two conditions is met:

- &allow-other-keys was specified in the lambda-list.

- Somewhere among the keyword argument pairs is a pair whose keyword is
:allow-other-keys and whose value is not nil.

If either condition obtains, then it is not an error for an argument pair to
match no parameter specified, and the argument pair is simply ignored (but
such an argument pair is accessible through the &rest parameter if one was
specified). The purpose of these mechanisms is to allow sharing of argument
lists among several functions and to allow either the caller or the called func-
tion to specify that such sharing may be taking place.

After all parameter specifiers have been processed, the auxiliary variable
specifiers (those following the lambda-list keyword &aux) are processed from
left to right. For each one, the initform is evaluated and the variable var
bound to that value (or to nil if no initform was specified). Nothing can be
done with &aux variables that cannot be done with the special form letx*:

(lambda (x y &aux (a (car x)) (b 2) ¢) ...)
= (lambda (x y) (let* ((a (car x)) (b 2) ¢) ...))

Which to use is purely a matter of style.

Whenever any initform is evaluated for any parameter specifier, that form
may refer to any parameter variable to the left of the specifier in which the
wnitform appears, including any supplied-p variables, and may rely on the
fact that no other parameter variable has yet been bound (including its own
parameter variable).

Once the lambda-list has been processed, the forms in the body of the
lambda-expression are executed. These forms may refer to the arguments to
the function by using the names of the parameters. On exit from the function,
either by a normal return of the function’s value(s) or by a non-local exit, the
parameter bindings, whether lexical or special, are no longer in effect. (The
bindings are not necessarily permanently discarded, for a lexical binding can
later be reinstated if a “closure” over that binding was created, perhaps by
using function, and saved before the exit occurred.)

Examples of &optional and &rest parameters:

((lambda (a b) (+ a (¥ b 3))) 4 5) = 19
((lambda (a &optional (b 2)) (+ a (* b 3))) 4 5) = 19
((lambda (a &optional (b 2)) (+ a (¥ b 3))) 4) = 10
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((lambda (&optional (a 2 b) (c

= (2 nil 3 nil nil)
((lambda (&optional (a 2 b) (c
8)

= (6 t 3 nil nil)
((lambda (&optional (a 2 b) (c
6 3)

= (6 t 3 t nil)
((lambda (&optional (a 2 b) (c
6 3 8)

= (6t 3t (8))
((lambda (&optional (a 2 b) (c
6 389 10 11)

= (6t 3t (89 10 11))

Examples of &key parameters:

((lambda (a b &key c d) (list
= (1 2 nil nil)

((lambda (a b &key c d) (list
= (1 2 6 nil)

((lambda (a b &key c d) (list
= (1 2 nil 8)

((lambda (a b &key c d) (list
= (126 8)

((lambda (a b &key c d) (list
= (126 8)

((lambda (a b &key c d) (list
= (:a 16 8)

((lambda (a b &key c d) (list
= (:a :b :d nil)

Examples of mixtures:

((lambda (a &optional (b 3) &rest

(list a b c d x))
1) = (1 3 nil 1 ())

3d)

3d)

3d)

3d)

3d)

&rest

&rest

&rest

&rest

&rest

d)) 1

d)) 1

d)) 1

d)) 1

d)) 1

d))

d))

&key

x) (list

x) (list

x) (list

x) (list

x) (list

2)

2 :c 8)

2 :c 6 :d 8)

a1l :d 8

c (d a))

:c 6)

:c 6)

:d)

x)))

x))

x))

x))

x))
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((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x))
12) = (12011 ()

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x))
¢ 7) = (:c 7 nil :¢c ()

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x))
16:c7) = (1671 (cT))

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x))
16 :4d8) = (16nil 8 (:4 8))

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x))
16:d8:c9:d10) = (1698 (:d8 :c9 :410))

All lambda-list keywords are permitted, but not terribly useful, in lambda-
expressions appearing explicitly as the first element of a function-call form.
They are extremely useful, however, in functions given global names by defun.

All symbols whose names begin with & are conventionally reserved for use
as lambda-list keywords and should not be used as variable names. Implemen-
tations of Common Lisp are free to provide additional lambda-list keywords.

lambda-list-keywords [Constant]

The value of lambda-list-keywords i1s a list of all the lambda-list key-
words used in the implementation, including the additional ones used only
by defmacro. This list must contain at least the symbols &optional, &rest,
&key, &allow-other—keys, &aux, &body, &whole, and &environment.

As an example of the use of &allow-other-keys and :allow-other-keys,
consider a function that takes two keyword arguments of its own and also
accepts additional keyword arguments to be passed to make-array:

(defun array-of-strings (str dims &rest keyword-pairs
&key (start 0) end &allow-other-keys)
(apply #’make-array dims
:initial-element (subseq str start end)
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:allow-other-keys t
keyword-pairs))

This function takes a string and dimensioning information and returns an
array of the specified dimensions, each of whose elements is the specified string.
However, :start and :end keyword arguments may be used in the usual
manner (see chapter 14) to specify that a substring of the given string should
be used. In addition, the presence of &allow-other—keys in the lambda-list
indicates that the caller may specify additional keyword arguments; the &rest
argument provides access to them. These additional keyword arguments are
fed to make-array. Now, make-array normally does not allow the keywords
:start and :end to be used, and it would be an error to specify such keyword
arguments to make-array. However, the presence in the call to make-array of
the keyword argument :allow-other-keys with a non-nil value causes any
extraneous keyword arguments, including :start and :end, to be acceptable
and ignored.

lambda-parameters-limit [Constant]

The value of lambda-parameters-1limit is a positive integer that is the upper
exclusive bound on the number of distinct parameter names that may appear
in a single lambda-list. This bound depends on the implementation but will
not be smaller than 50. Implementors are encouraged to make this limit as
large as practicable without sacrificing performance. See call-arguments-—
limit.

5.3. Top-Level Forms

The standard way for the user to interact with a Common Lisp implementation
1s via a read-eval-print loop: the system repeatedly reads a form from some
input source (such as a keyboard or a disk file), evaluates it, and then prints
the value(s) to some output sink (such as a display screen or another disk file).
Any form (evaluable data object) is acceptable; however, certain special forms
are specifically designed to be convenient for use as top-level forms, rather than
as forms embedded within other forms in the way that (+ 3 4) is embedded
within (if p (+ 3 4) 6). These top-level special forms may be used to
define globally named functions, to define macros, to make declarations, and
to define global values for special variables.

: It is not illegal to use these forms at other than top level, but whether it
: is meaningful to do so depends on context. Compilers, for example, may not
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: recognize these forms properly in other than top-level contexts. (As a special
. case, however, if a progn form appears at top level, then all forms within that
. progn are considered by the compiler to be top-level forms.)
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X3J13 voted in March 1989 (50) to clarify that, while defining forms nor-
mally appear at top level, it is meaningful to place them in non-top-level
contexts. All defining forms that create functional objects from code ap-
pearing as argument forms must ensure that such argument forms refer to the
enclosing lexical environment. Compilers must handle defining forms properly
in all situations, not just top-level contexts. However, certain compile-time
side effects of these defining forms are performed only when the defining forms
occur at top level (see section 25.1).

Compatibility note: In MacLisp, a top-level progn is considered to contain top-
level forms only if the first form 1s (quote compile). This odd marker is unnecessary
in Common Lisp.

Macros are usually defined by using the special form defmacro. This facility
is fairly complicated; it is described in chapter 8.

5.3.1. Defining Named Functions

The defun special form is the usual means of defining named functions.

defun name lambda-list | {declaration}* | doc-string] {form}*  [Macro]

Evaluating a defun form causes the symbol name to be a global name for the
function specified by the lambda-expression

(lambda lambda-list {declaration | doc-siring}* { form}*)

defined in the lexical environment in which the defun form was executed.
Because defun forms normally appear at top level, this is normally the null
lexical environment.

X3J13 voted in March 1989 (50) to clarify that, while defining forms nor-
mally appear at top level, it is meaningful to place them in non-top-level
contexts; defun must define the function within the enclosing lexical environ-
ment, not within the null lexical environment.

X3J13 voted in March 1989 (89) to extend defun to accept any function-
name (a symbol or a list whose car is setf—see section 7.1) as a name. Thus
one may write

(defun (setf cadr) ...)

to define a setf expansion function for cadr (although it may be much more
convenient to use defsetf or define-modify-macro).
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If the optional documentation string doc-stringis present, then it 1s attached
to the name as a documentation string of type function; see documentation.
If doc-string is not followed by a declaration, it may be present only if at least
one form is also specified, as it 1s otherwise taken to be a form. It is an error
if more than one doc-string is present.

The forms constitute the body of the defined function; they are executed
as an implicit progn.

The body of the defined function is implicitly enclosed in a block construct
whose name is the same as the name of the function. Therefore return-from
may be used to exit from the function.

Other implementation-dependent bookkeeping actions may be taken as well
by defun. The name is returned as the value of the defun form. For example:

(defun discriminant (a b c¢)
(declare (number a b ¢))
"Compute the discriminant for a quadratic equation.
Given a, b, and c, the value b"2-4*a*c is calculated.
The quadratic equation a*x"2+b#x+c0 has real, multiple,
or complex roots depending on whether this calculated
value is positive, zero, or negative, respectively."
(- (*bb) (*x4ac)))
= discriminant
and now (discriminant 1 2/3 -2) = 76/9

The documentation string in this example neglects to mention that the
coefficients a, b, and ¢ must be real for the discrimination criterion to hold.
Here is an improved version:

"Compute the discriminant for a quadratic equation.
Given a, b, and c, the value b"2-4*a*c is calculated.
If the coefficients a, b, and ¢ are all real (that is,
not complex), then the quadratic equation a*x"2+b*x+cH0
has real, multiple, or complex roots depending on
whether this calculated value is positive, zero, or
negative, respectively."

It is permissible to use defun to redefine a function, to install a corrected
version of an incorrect definition, for example. It is permissible to redefine
a macro as a function. It is an error to attempt to redefine the name of a
special form (see table 5-1) as a function.
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5.3.2. Declaring Global Variables and Named Constants

The defvar and defparameter special forms are the usual means of specifying
globally defined variables. The defconstant special form is used for defining
named constants.

defvar name [initial-value [documentation]] [Macro)
defparameter name initial-value [documentation) [Macro)
defconstant name initial-value [documentation) [Macro)

defvar is the recommended way to declare the use of a special variable in a
program.

(defvar wvariable)

proclaims variable to be special (see proclaim), and may perform other
system-dependent bookkeeping actions.

X3J13 voted in June 1987 (61) to clarify that if no initial-value form is
provided, defvar does not change the value of the variable; if no initial-value
form is provided and the variable has no value, defvar does not give it a
value.

If a second argument form is supplied,

(defvar wvariable initial-value)

then wvariable is initialized to the result of evaluating the form initial-value
unless 1t already has a value. The initial-value form is not evaluated unless it
1s used; this fact is useful if evaluation of the initial-value form does something
expensive like creating a large data structure.

X3J13 voted in June 1987 (60) to clarify that evaluation of the initial-value
and the initialization of the variable occur, if at all, at the time the defvar
form is executed, and that the initial-value form is evaluated if and only if
the variable does not already have a value.

The initialization is performed by assignment and thus assigns a global value
to the variable unless there are currently special bindings of that variable.
Normally there should not be any such special bindings.

defvar also provides a good place to put a comment describing the meaning
of the variable, whereas an ordinary special proclamation offers the tempta-
tion to declare several variables at once and not have room to describe them

all.

(defvar *visible-windows* 0
"Number of windows at least partially visible on the screen'")
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defparameter is similar to defvar, but defparameter requires an wnitial-
value form, always evaluates the form, and assigns the result to the vari-
able. The semantic distinction is that defvar is intended to declare a vari-
able changed by the program, whereas defparameter is intended to declare a
variable that is normally constant but can be changed (possibly at run time),
where such a change is considered a change fo the program. defparameter
therefore does not indicate that the quantity never changes; in particular,
it does not license the compiler to build assumptions about the value into
programs being compiled.

defconstant is like def parameter but does assert that the value of the vari-
able name is fixed and does license the compiler to build assumptions about
the value into programs being compiled. (However, if the compiler chooses to
replace references to the name of the constant by the value of the constant
in code to be compiled, perhaps in order to allow further optimization, the
compiler must take care that such “copies” appear to be eql to the object
that is the actual value of the constant. For example, the compiler may freely
make copies of numbers but must exercise care when the value is a list.)

It is an error if there are any special bindings of the variable at the time the
defconstant form is executed (but implementations may or may not check
for this).

Once a name has been declared by defconstant to be constant, any further
assignment to or binding of that special variable is an error. This is the case for
such system-supplied constants as t and most-positive—-fixnum. A compiler
may also choose to issue warnings about bindings of the lexical variable of the
same name.

X3J13 voted in January 1989 (48) to clarify the preceding paragraph by
specifying that it is an error to rebind constant symbols as either lexical or
special variables. Consequently, a valid reference to a symbol declared with
defconstant always refers to its global value. (Unfortunately, this violates
the principle of referential transparency, for one cannot always choose names
for lexical variables without regard to surrounding context.)

For any of these constructs, the documentation should be a string. The
string is attached to the name of the variable, parameter, or constant under
the variable documentation type; see the documentation function.

X3J13 voted in March 1988 (59) to clarify that the documentation-string
is not evaluated but must appear as a literal string when the defvar,
defparameter, or defconstant form is evaluated.

For example, the form

(defvar *avoid-registers* nil "Compilation control switch #43")
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is legitimate, but

(defvar *avoid-registers#* nil
(format nil "Compilation control switch #D"
(incf *compiler-switch-number#)))

is erroneous because the call to format is not a literal string.
(On the other hand, the form

(defvar *avoid-registers#* nil
#.(format nil "Compilation control switch #~D"
(incf *compiler-switch-number%*)))

might be used to accomplish the same purpose, because the call to format is
evaluated at read time; when the defvar form is evaluated, only the result
of the call to format, a string, appears in the defvar form.)

These constructs are normally used only as top-level forms. The value
returned by each of these constructs is the name declared.

5.3.3. Control of Time of Evaluation

The eval-when special form allows pieces of code to be executed only at
compile time, only at load time, or when interpreted but not compiled. Its
uses are relatively esoteric.

eval-when ({situation}*) {form}* [Special form]

The body of an eval-when form is processed as an implicit progn, but only in
the situations listed. Each situation must be a symbol, either compile, load,
or eval.

eval specifies that the interpreter should process the body. compile spec-
ifies that the compiler should evaluate the body at compile time in the com-
pilation context. load specifies that the compiler should arrange to evaluate
the forms in the body when the compiled file containing the eval-when form
is loaded.

The eval-when construct may be more precisely understood in terms of a
model of how the compiler processes forms in a file to be compiled. Successive
forms are read from the file using the function read. These top-level forms
D are normally processed in what we shall call not-compile-time mode. There
i1s another mode called compile-time-too mode. The eval-when special form
controls which of these two modes to use.

Every form 1s processed as follows:
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- If the form is an eval-when form:
— If the situation load is specified:

If the situation compile is specified, or if the current processing mode
1s compile-time-too and the situation eval is specified, then process
each of the forms in the body in compile-time-too mode.

Otherwise, process each of the forms in the body in not-compile-time
mode.

— If the situation load is not specified:

If the situation compile is specified, or if the current processing mode
1s compile-time-too and the situation eval is specified, then evaluate
each of the forms in the body in the compiler’s executing environment.

Otherwise, ignore the eval-when form entirely.

+ If the form is not an eval-when form, then do two things. First, if the
current processing mode is compile-time-too mode, evaluate the form in
the compiler’s executing environment. Second, perform normal compiler
processing of the form (compiling functions defined by defun forms, and so
on).

One example of the use of eval-when is that if the compiler is to be able
. to properly read a file that uses user-defined reader macro characters, it is
. necessary to write

(eval-when (compile load eval)
(set-macro-character #\$ #’(lambda (stream char)
(declare (ignore char))
(list ’dollar (read stream)))))

This causes the call to set-macro-character to be executed in the compiler’s
execution environment, thereby modifying its reader syntax table.

X3J13 voted in March 1989 (73) to completely redesign the eval-when con-
struct to solve some problems concerning its treatment in other than top-level
contexts. The new definition is upward compatible with the old definition,
but the old keywords are deprecated.
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eval-when ({situation}*) {form}* [Special form]

The body of an eval-when form is processed as an implicit progn, but only
in the situations listed. Each situation must be a symbol, either :compile-
toplevel, :1load-toplevel, or :execute.

The use of :compile-toplevel and :load-toplevel controls whether and
when processing occurs for top-level forms. The use of :execute controls
whether processing occurs for non-top-level forms.

The eval-when construct may be more precisely understood in terms of a
model of how the file compiler, compile-file, processes forms in a file to be
compiled.

Successive forms are read from the file by the file compiler using read.
These top-level forms are normally processed in what we call “not-compile-
time” mode. There is one other mode, called “compile-time-too” mode, which
can come into play for top-level forms. The eval-when special form i1s used
to annotate a program in a way that allows the program doing the processing
to select the appropriate mode.

Processing of top-level forms in the file compiler works as follows:

« If the form is a macro call, 1t 1s expanded and the result is processed as
a top-level form in the same processing mode (compile-time-too or not-
compile-time).

« If the form is a progn (or locally (113)) form, each of its body forms is
sequentially processed as top-level forms in the same processing mode.

- If the form is a compiler-let, macrolet, or symbol-macrolet, the file
compiler makes the appropriate bindings and recursively processes the body
forms as an implicit top-level progn with those bindings in effect, in the
same processing mode.

- If the form is an eval-when form, it is handled according to the following
table:

LT CT EX CTTM Action

yes  yes - - process body in compile-time-too mode
yes  no yes yes process body in compile-time-too mode
yes  no - no process body in not-compile-time mode
yes  no no - process body in not-compile-time mode
no yes - - evaluate body

no no yes yes evaluate body

no no - no do nothing

no no no - do nothing
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In the preceding table the column LT asks whether :load-toplevel is
one of the situations specified in the eval-when form; CT similarly refers
to :compile-toplevel and EX to :execute. The column CTTM asks
whether the eval-when form was encountered while in compile-time-too
mode. The phrase “process body” means to process the body as an im-
plicit top-level progn in the indicated mode, and “evaluate body” means to
evaluate the body forms sequentially as an implicit progn in the dynamic
execution context of the compiler and in the lexical environment in which
the eval-when appears.

+ Otherwise, the form is a top-level form that is not one of the special cases.
If in compile-time-too mode, the compiler first evaluates the form and then
performs normal compiler processing on it. If in not-compile-time mode,
only normal compiler processing is performed (see section 25.1). Any sub-
forms are treated as non-top-level forms.

Note that top-level forms are guaranteed to be processed in the order in
which they textually appear in the file, and that each top-level form read
by the compiler is processed before the next is read. However, the order of
processing (including, in particular, macro expansion) of subforms that are
not top-level forms is unspecified.

For an eval-when form that is not a top-level form in the file compiler (that
is, either in the interpreter, in compile, or in the file compiler but not at top
level), if the :execute situation is specified, its body is treated as an implicit
progn. Otherwise, the body is ignored and the eval-when form has the value
nil.

For the sake of backward compatibility, a situation may also be compile,
load, or eval. Within a top-level eval-when form these have the same mean-
ing as :compile-toplevel, :load-toplevel, and :execute, respectively;
but their effect is undefined when used in an eval-when form that is not at
top level.

The following effects are logical consequences of the preceding specification:

- It is never the case that the execution of a single eval-when expression will
execute the body code more than once.

+ The old keyword eval was a misnomer because execution of the body need
not be done by eval. For example, when the function definition

(defun foo () (eval-when (:execute) (print ’foo)))

is compiled the call to print should be compiled, not evaluated at compile
time.
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- Macros intended for use in top-level forms should arrange for all side-effects

to be done by the forms in the macro expansion. The macro-expander itself
should not perform the side-effects.

(defmacro foo ()
(really-foo) ; Wrong
‘(really-foo))

(defmacro foo ()
‘(eval-when (:compile-toplevel
:load-toplevel :execute) ; Right
(really-foo0)))

Adherence to this convention will mean that such macros will behave intu-
itively when called in non-top-level positions.

- Placing a variable binding around an eval-when reliably captures the bind-

ing because the “compile-time-too” mode cannot occur (because the eval-
when could not be a top-level form). For example,

(let ((x 3))
(eval-when (:compile-toplevel :load-toplevel :execute)
(print x)))

will print 3 at execution (that is, load) time and will not print anything at
compile time. This is important so that expansions of defun and defmacro
can be done in terms of eval-when and can correctly capture the lexical
environment. For example, an implementation might expand a defun form
such as

(defun bar (x) (defun foo () (+ x 3)))

mnto
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(progn (eval-when (:compile-toplevel)
(compiler: :notice-function ’bar ’(x)))
(eval-when (:load-toplevel :execute)
(setf (symbol-function ’bar)
#’(lambda (x)
(progn (eval-when (:compile-toplevel)
(compiler: :notice-function ’foo
')
(eval-when (:load-toplevel :execute)
(setf (symbol-function ’foo)
#’(lambda () (+ x 3)))))))))

which by the preceding rules would be treated the same as

(progn (eval-when (:compile-toplevel)
(compiler: :notice-function ’bar ’(x)))
(eval-when (:load-toplevel :execute)
(setf (symbol-function ’bar)
#’(lambda (x)
(progn (eval-when (:load-toplevel :execute)
(setf (symbol-function ’foo)
#’(lambda () (+ x 3)))))))))

Here are some additional examples.

(let ((x 1))
(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’fool) #’(lambda () x))))

The eval-when in the preceding expression is not at top level, so only the
:execute keyword is considered. At compile time, this has no effect. At load
time (if the let is at top level), or at execution time (if the let is embedded
in some other form which does not execute until later), this sets (symbol-
function ’fool) to a function that returns 1.

(eval-when (:execute :load-toplevel :compile-toplevel)
(et ((x 2))
(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’foo2) #’(lambda () x)))))

If the preceding expression occurs at the top level of a file to be compiled, it
has both a compile time and a load-time effect of setting (symbol-function
’f002) to a function that returns 2.
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(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’foo3) #’(lambda () 3)))

If the preceding expression occurs at the top level of a file to be compiled, it
has both a compile time and a load-time effect of setting the function cell of
foo3 to a function that returns 3.

(eval-when (:compile-toplevel)
(eval-when (:compile-toplevel)
(print ’foo4)))

The preceding expression always does nothing; it simply returns nil.

(eval-when (:compile-toplevel)
(eval-when (:execute)
(print ’fo05)))

If the preceding form occurs at the top level of a file to be compiled, foo5
is printed at compile time. If this form occurs in a non-top-level position,
nothing is printed at compile time. Regardless of context, nothing is ever
printed at load time or execution time.

(eval-when (:execute :load-toplevel)
(eval-when (:compile-toplevel)
(print ’fo086)))

If the preceding form occurs at the top level of a file to be compiled, foo8
is printed at compile time. If this form occurs in a non-top-level position,
nothing is printed at compile time. Regardless of context, nothing is ever
printed at load time or execution time.



Predicates

A predicate is a function that tests for some condition involving its arguments
and returns nil if the condition is false, or some non-nil value if the condition
is true. One may think of a predicate as producing a Boolean value, where
nil stands for false and anything else stands for true. Conditional control
structures such as cond, if, when, and unless test such Boolean values. We
say that a predicate s true when it returns a non-nil value, and s false when
it returns nil; that is, it is true or false according to whether the condition
being tested is true or false.

By convention, the names of predicates usually end in the letter p (which
stands for “predicate”). Common Lisp uses a uniform convention in hyphen-
ating names of predicates. If the name of the predicate is formed by adding
a p to an existing name, such as the name of a data type, a hyphen is placed
before the final p if and only if there is a hyphen in the existing name. For ex-
ample, number begets numberp but standard-char begets standard-char-p.
On the other hand, if the name of a predicate is formed by adding a prefix-
ing qualifier to the front of an existing predicate name, the two names are
joined with a hyphen and the presence or absence of a hyphen before the final
p i1s not changed. For example, the predicate string-lessp has no hyphen
before the p because it is the string version of lessp (a MacLisp function
that has been renamed < in Common Lisp). The name string-less-p would
incorrectly imply that it is a predicate that tests for a kind of object called
a string-less, and the name stringlessp would connote a predicate that
tests whether something has no strings (is “stringless”)!

The control structures that test Boolean values only test for whether or not
the value is nil, which is considered to be false. Any other value is considered
to be true. Often a predicate will return nil if it “fails” and some useful value
if 1t “succeeds”; such a function can be used not only as a test but also for
the useful value provided in case of success. An example is member.
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If no better non-nil value is available for the purpose of indicating success,
by convention the symbol t is used as the “standard” true value.

6.1. Logical Values

The names nil and t are constants in Common Lisp. Although they are
symbols like any other symbols, and appear to be treated as variables when
evaluated, it is not permitted to modify their values. See defconstant.

nil [Constant]

The value of nil is always nil. This object represents the logical false value
and also the empty list. It can also be written ().

t [Constant]

The value of t is always t.

6.2. Data Type Predicates

Perhaps the most important predicates in Lisp are those that deal with data
types; that is, given a data object one can determine whether or not it belongs
to a given type, or one can compare two type specifiers.

6.2.1. General Type Predicates

If a data type is viewed as the set of all objects belonging to the type, then
the typep function is a set membership test, while subtypep is a subset test.

typep object type [Function)

typep is a predicate that is true if object is of type type, and is false otherwise.
Note that an object can be “of” more than one type, since one type can
include another. The type may be any of the type specifiers mentioned in
chapter 4 except that it may not be or contain a type specifier list whose first
element 1s function or values. A specifier of the form (satisfies fn) is
handled simply by applying the function fn to object (see funcall); the object
is considered to be of the specified type if the result is not nil.
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X3J13 voted in January 1989 (8) to change typep to give specialized array
and complex type specifiers the same meaning for purposes of type discrimi-
nation as they have for declaration purposes. Of course, this also applies to
such type specifiers as vector and simple-array (see section 4.5). Thus

(typep foo ’(array bignum))

in the first edition asked the question, Is foo an array specialized to hold
bignums? but under the new interpretation asks the question, Could the
array foo have resulted from giving bignum as the :element-type argument
to make-array?

subtypep typel typel [Function)

The arguments must be type specifiers that are acceptable to typep. The
two type specifiers are compared; this predicate is true if typel is definitely a
(not necessarily proper) subtype of type2. If the result is nil, however, then
typel may or may not be a subtype of type2 (sometimes it is impossible to tell,
especially when satisfies type specifiers are involved). A second returned
value indicates the certainty of the result; if it is true, then the first value is an
accurate indication of the subtype relationship. Thus there are three possible
result combinations:

t t typel is definitely a subtype of type2
nil t typel is definitely not a subtype of type2
nil nil subtypep could not determine the relationship

X3J13 voted in January 1989 (171) to place certain requirements upon the
implementation of subtypep, for it noted that implementations in many cases
simply “give up” and return the two values nil and nil when in fact it would
have been possible to determine the relationship between the given types.
The requirements are as follows, where 1t is understood that a type specifier
s tnvolves a type specifier u if either s contains an occurrence of u directly or
s contains a type specifier w defined by deftype whose expansion involves u.

- subtypep is not permitted to return a second value of nil unless one or

both of its arguments involves satisfies, and, or, not, or member.

- subtypep should signal an error when one or both of its arguments involves
values or the list form of the function type specifier.

- subtypep must always return the two values t and t in the case where its
arguments, after expansion of specifiers defined by deftype, are equal.
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In addition, X3J13 voted to clarify that in some cases the relationships be-
tween types as reflected by subtypep may be implementation-specific. For
example, in an implementation supporting only one type of floating-point
number, (subtypep ’float ’long-float) would return t and t, since the
two types would be 1dentical.

Note that satisfies is an exception because relationships between types
involving satisfies are undecidable in general, but (as X3J13 noted) and,
or, not, and member are merely very messy to deal with. In all likelihood
these will not be addressed unless and until someone is willing to write a
careful specification that covers all the cases for the processing of these type
specifiers by subtypep. The requirements stated above were easy to state and
probably suffice for most cases of interest.

X3J13 voted in January 1989 (8) to change subtypep to give specialized
array and complex type specifiers the same meaning for purposes of type
discrimination as they have for declaration purposes. Of course, this also
applies to such type specifiers as vector and simple-array (see section 4.5).

If A and B are type specifiers (other than *, which technically is not a
type specifier anyway), then (array A) and (array B) represent the same
type in a given implementation if and only if they denote arrays of the same
specialized representation in that implementation; otherwise they are dis-
joint. To put it another way, they represent the same type if and only
if (upgraded-array-element-type ’A) and (upgraded-array-element-—
type ’B) are the same type. Therefore

(subtypep ’(array A) ’(array B))

is true if and only if (upgraded-array-element-type ’A) is the same type
as (upgraded-array-element-type ’B).

The complex type specifier is treated in a similar but subtly different man-
ner. If A and B are two type specifiers (but not #, which technically is
not a type specifier anyway), then (complex A) and (complex B) represent
the same type in a given implementation if and only if they refer to com-
plex numbers of the same specialized representation in that implementation;
otherwise they are disjoint. Note, however, that there is no function called
make-complex that allows one to specify a particular element type (then to be
upgraded); instead, one must describe specialized complex numbers in terms
of the actual types of the parts from which they were constructed. There is
no number of type (or rather, representation) float as such; there are only
numbers of type single-float, numbers of type double-float, and so on.
Therefore we want (complex single-float) to be a subtype of (complex
float).
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The rule, then, is that (complex A) and (complex B) represent the same
type (and otherwise are disjoint) in a given implementation if and only if
either the type A is a subtype of B, or (upgraded-complex—-part-type ’A)
and (upgraded-complex-part-type ’B) are the same type. In the latter
case (complex A) and (complex B) in fact refer to the same specialized
representation. Therefore

(subtypep ’(complex A) ’(complex B))

is true if and only if the results of (upgraded-complex-part-type ’A) and
(upgraded-complex-part-type ’B) are the same type.
Under this interpretation

(subtypep ’(complex single-float) ’(complex float))
must be true in all implementations; but
(subtypep ’(array single-float) ’(array float))

is true only in implementations that do not have a specialized array represen-
tation for single-float elements distinct from that for float elements in
general.

6.2.2. Specific Data Type Predicates

The following predicates test for individual data types.

null object [Function)

null is true if its argument is (), and otherwise is false. This is the same
operation performed by the function not; however, not is normally used to
invert a Boolean value, whereas null is normally used to test for an empty
list. The programmer can therefore express wntent by the choice of function
name.

(null x) = (typep x ’null) = (eq x *())

symbolp object [Function)

symbolp is true if its argument is a symbol, and otherwise is false.

(symbolp x) = (typep x ’symbol)
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Compatibility note: The Interlisp equivalent of symbolp is called litatom.

atom object [Function)

The predicate atom is true if its argument is not a cons, and otherwise is false.
Note that (atom ?()) is true, because () =nil.

(atom x) = (typep x ’atom) = (not (typep x ’cons))

Compatibility note: In some Lisp dialects, notably Interlisp, only symbols and
numbers are considered to be atoms; arrays and strings are considered to be neither
atoms nor lists (conses).

consp object [Function)

The predicate consp is true if its argument is a cons, and otherwise is false.
Note that the empty list is not a cons, so (consp ’()) = (consp ’nil) =
nil.

(consp x) = (typep x ’cons) = (not (typep x ’atom))

Compatibility note: Some Lisp implementations call this function pairpor listp.
The name pairp was rejected for Common Lisp because it emphasizes too strongly
the dotted-pair notion rather than the usual usage of conses in lists. On the other
hand, 1istp too strongly implies that the cons is in fact part of a list, which after
all it might not be; moreover, () is a list, though not a cons. The name consp seems
to be the appropriate compromise.

listp object [Function)

listp is true if its argument is a cons or the empty list (), and otherwise is
false. Tt does not check for whether the list is a “true list” (one terminated
by nil) or a “dotted list” (one terminated by a non-null atom).

(listp x) = (typep x ’list) = (typep x ’(or cons null))

numberp object [Function)

numberp is true if its argument is any kind of number, and otherwise is false.
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(numberp x) = (typep x ’number)

integerp object [Function)
integerp is true if its argument is an integer, and otherwise is false.

(integerp x) = (typep x ’integer)

Compatibility note: In MacLisp this is called fixp. Users have been confused as
to whether this meant integerp or fixnump, and so the name integerp has been
adopted here.

rationalp object [Function)

rationalp is true if its argument is a rational number (a ratio or an integer),
and otherwise is false.

(rationalp x) = (typep x ’rational)

floatp object [Function)

floatp is true if its argument is a floating-point number, and otherwise is
false.

(floatp x) = (typep x ’float)

realp object [Function)

X3J13 voted in March 1989 (151) to add the function realp. realp is true if
its argument 1s a real number, and otherwise is false.

(realp x) = (typep x ’real)

complexp object [Function)

complexp is true if its argument is a complex number, and otherwise is false.

(complexp x) = (typep x ’complex)

characterp object [Function)

characterp is true if its argument is a character, and otherwise is false.
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(characterp x) = (typep x ’character)

stringp object [Function)

stringp is true if its argument is a string, and otherwise is false.

(stringp x) = (typep x ’string)

bit-vector-p object [Function)
bit-vector-p is true if its argument is a bit-vector, and otherwise 1s false.

(bit-vector-p x) = (typep x ’bit-vector)

vectorp object [Function)

vectorp is true if its argument is a vector, and otherwise is false.

(vectorp x) = (typep x ’vector)

simple-vector-p object [Function)

vectorp is true if its argument is a simple general vector, and otherwise is
false.

(simple-vector-p x) = (typep x ’simple-vector)

simple-string-p object [Function)

simple-string-p is true if its argument is a simple string, and otherwise is
false.

(simple-string-p x) = (typep x ’simple-string)

simple-bit-vector-p object [Function)

simple-bit-vector-pis true if its argument is a simple bit-vector, and oth-
erwise is false.

(simple-bit-vector-p x) = (typep x ’simple-bit-vector)

arrayp object [Function)

arrayp 1s true if its argument is an array, and otherwise is false.
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(arrayp x) = (typep x ’array)

packagep object [Function)
packagep is true if its argument is a package, and otherwise is false.

(packagep x) = (typep x ’package)

functionp object [Function)

© functionp is true if its argument is suitable for applying to arguments,
. using for example the funcall or apply function. Otherwise functionp is
. false.

functionp is always true of symbols, lists whose car is the symbol lambda,
any value returned by the function special form, and any values returned by
the function compile when the first argument is nil.

X3J13 voted in June 1988 (90) to define
(functionp x) = (typep x ’function)

Because the vote also specifies that types cons and symbol are disjoint from
the type function, this is an incompatible change; now functionp is in fact
always false of symbols and lists.

compiled-function-p object [Function)

compiled-function-p is true if its argument is any compiled code object,
and otherwise is false.

(compiled-function-p x) = (typep x ’compiled-function)

commonp object [Function)

© commonp is true if its argument is any standard Common Lisp data type, and
. otherwise is false.

(commonp x) = (typep x ’common)

X3J13 voted in March 1989 (17) to remove the predicate commonp (and the
type common) from the language.

See also standard-char-p, string-char-p, streamp, random-state-p,
readtablep, hash-table-p, and pathnamep.
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6.3. Equality Predicates

Common Lisp provides a spectrum of predicates for testing for equality of two
objects: eq (the most specific), eql, equal, and equalp (the most general).
eq and equal have the meanings traditional in Lisp. eql was added because
it is frequently needed, and equalp was added primarily in order to have a
version of equal that would ignore type differences when comparing numbers
and case differences when comparing characters. If two objects satisfy any
one of these equality predicates, then they also satisfy all those that are more
general.

eq T Y [Function)

(eq # y) is true if and only if z and y are the same identical object. (Im-
plementationally, z and y are usually eq if and only if they address the same
identical memory location.)

It should be noted that things that print the same are not necessarily eq to
each other. Symbols with the same print name usually are eq to each other
because of the use of the intern function. However, numbers with the same
value need not be eq, and two similar lists are usually not eq. For example:

(eq ’a ’b) is false.
(eq ’a ’a) 1s true.
(eq 3 3) might be true or false, depending on the implementation.
(eq 3 3.0) is false.
(eq 3.0 3.0) might be true or false, depending on the implementation.
(eq #c(3 -4) #c(3 -4))
might be true or false, depending on the implementation.
(eq #c(3 -4.0) #c(3 -4)) is false.
(eq (cons ’a ’b) (cons ’a ’c)) is false.
(eq (cons ’a ’b) (cons ’a ’b)) is false.
(eq ’(a . b) ’(a . b)) might be true or false.
(progn (setq x (cons ’a 'b)) (eq x x)) is true.
(progn (setq x ’(a . b)) (eq x x)) is true.
(eq #\A #\A) might be true or false, depending on the implementation.
(eq "Foo" "Foo'") might be true or false.
(eq "Foo" (copy-seq "Foo")) is false.
(eq "FOO" "foo") is false.

In Common Lisp, unlike some other Lisp dialects, the implementation is per-
mitted to make “copies” of characters and numbers at any time. (This per-
mission is granted because it allows tremendous performance improvements
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in many common situations.) The net effect is that Common Lisp makes no
guarantee that eq will be true even when both its arguments are “the same
thing” if that thing is a character or number. For example:

(let ((x 5)) (eq x x)) might be true or false.

The predicate eql is the same as eq, except that if the arguments are charac-
ters or numbers of the same type then their values are compared. Thus eql
tells whether two objects are conceptually the same, whereas eq tells whether
two objects are implementationally identical. It is for this reason that eql,
not eq, is the default comparison predicate for the sequence functions defined
in chapter 14.

Implementation note: eq simply compares the two given pointers, so any kind
of object that is represented in an “immediate” fashion will indeed have like-valued
instances satisfy eq. In some implementations, for example, fixnums and characters
happen to “work.” However, no program should depend on this, as other implemen-
tations of Common Lisp might not use an immediate representation for these data
types.

An additional problem with eq is that the implementation is permitted to
“collapse” constants (or portions thereof) appearing in code to be compiled
if they are equal. An object is considered to be a constant in code to be
compiled if it is a self-evaluating form or is contained in a quote form. This
is why (eq "Foo'" "Foo") might be true or false; in interpreted code it would
normally be false, because reading in the form (eq "Foo" "Foo") would con-
struct distinct strings for the two arguments to eq, but the compiler might
choose to use the same identical string or two distinct copies as the two ar-
guments in the call to eq. Similarly, (eq *(a . b) ’(a . b)) might be true
. or false, depending on whether the constant conses appearing in the quote
. forms were collapsed by the compiler. However, (eq (cons ’a ’b) (cons
’a ’b)) is always false, because every distinct call to the cons function nec-
essarily produces a new and distinct cons.

X3J13 voted in March 1989 (147) to clarify that eval and compile are
not permitted either to copy or to coalesce (“collapse”) constants (see eq)
appearing in the code they process; the resulting program behavior must refer
to objects that are eql to the corresponding objects in the source code. Only
the compile-file/load process is permitted to copy or coalesce constants
(see section 25.1).
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eql z y [Function)

The eql predicate is true if its arguments are eq, or if they are numbers of the
same type with the same value, or if they are character objects that represent
the same character. For example:

(eql ’a ’b) is false.

(eql ’a ’a) is true.

(eql 3 3) is true.

(eql 3 3.0) is false.

(eql 3.0 3.0) is true.

(eql #c(3 -4) #c(3 -4)) is true.

(eql #c(3 -4.0) #c(3 -4)) is false.

(eql (cons ’a ’b) (cons ’a ’c)) is false.
(eql (cons ’a ’b) (cons ’a ’b)) is false.
(eql ’(a . b) ’(a . b)) might be true or false.
(progn (setq x (cons ’a ’'b)) (eql x x)) is true.
(progn (setq x ’(a . b)) (eql x x)) is true.
(eql #\A #\A) is true.

(eql "Foo" "Foo") might be true or false.

(eql "Foo" (copy-seq "Foo")) is false.

(eql "FOO" "foo") is false.

Normally (eql 1.0s0 1.0d0) would be false; under the assumption that
1.0s80 and 1.0d0 are of distinct data types. However, implementations that
do not provide four distinct floating-point formats are permitted to “collapse”
the four formats into some smaller number of them; in such an implementa-
tion (eql 1.0s0 1.0d0) might be true. The predicate ¥ will compare the
values of two numbers even if the numbers are of different types.

If an implementation supports positive and negative zeros as distinct val-
ues (as in the IEEE proposed standard floating-point format), then (eql 0.0
-0.0) will be false. Otherwise, when the syntax -0.0 is read it will be inter-
preted as the value 0.0, and so (eql 0.0 -0.0) will be true. The predicate
Y differs from eql in that (]} 0.0 -0.0) will always be true, because ¥ com-
pares the mathematical values of its operands, whereas eql compares the
representational values, so to speak.

Two complex numbers are considered to be eql if their real parts are eql
and their imaginary parts are eql. For example, (eql #C(4 5) #C(4 5)) is
true and (eql #C(4 5) #C(4.0 5.0)) is false. Note that while (eql #C(5.0
0.0) 5.0) 1s false, (eql #C(5 0) 5) is true. In the case of (eql #C(5.0
0.0) 5.0) the two arguments are of different types and so cannot satisfy



PREDICATES 113

eql; that’s all there is to it. In the case of (eql #C(5 0) 5), however, #C(5
0) is not a complex number but is always automatically reduced by the rule
of complex canonicalization to the integer 5, just as the apparent ratio 20/4
is always simplified to 5.

The case of (eql "Foo" "Foo") is discussed above in the description of
eq. While eql compares the values of numbers and characters, it does not
compare the contents of strings. To compare the characters of two strings,
one should use equal, equalp, stringlf, or string-equal.

Compatibility note: The Common Lisp function eql is similar to the Interlisp
function eqp. However, eql considers 3 and 3.0 to be different, whereas eqp con-
siders them to be the same; eqp behaves like the Common Lisp § function, not like
eql, when both arguments are numbers.

equal z y Function
q

The equal predicate is true if its arguments are structurally similar (isomor-
phic) objects. A rough rule of thumb is that two objects are equal if and
only if their printed representations are the same.

Numbers and characters are compared as for eql. Symbols are compared
as for eq. This method of comparing symbols can violate the rule of thumb
for equal and printed representations, but only in the infrequently occurring
case of two distinct symbols with the same print name.

Certain objects that have components are equal if they are of the same
type and corresponding components are equal. This test is implemented in
a recursive manner and may fail to terminate for circular structures.

For conses, equal is defined recursively as the two car’s being equal and
the two edr’s being equal.

Two arrays are equal only if they are eq, with one exception: strings and
bit-vectors are compared element-by-element. If either argument has a fill
pointer, the fill pointer limits the number of elements examined by equal.
Uppercase and lowercase letters in strings are considered by equal to be
distinct. (In contrast, equalp ignores case distinctions in strings.)

Compatibility note: In Lisp Machine Lisp, equal ignores the difference between
uppercase and lowercase letters in strings. This violates the rule of thumb about
printed representations, however, which is very useful, especially to novices. It is
also inconsistent with the treatment of single characters, which in Lisp Machine Lisp
are represented as fixnums.
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Two pathname objects are equal if and only if all the corresponding com-
ponents (host, device, and so on) are equivalent. (Whether or not uppercase
and lowercase letters are considered equivalent in strings appearing in com-
ponents depends on the file name conventions of the file system.) Pathnames
that are equal should be functionally equivalent.

X3J13 voted in June 1989 (71) to clarify that equal never recursively de-
scends any structure or data type other than the ones explicitly described
above: conses, bit-vectors, strings, and pathnames. Numbers and characters
are compared as if by eql, and all other data objects are compared as if by

eq.

(equal ’a ’b) 1s false.

(equal ’a ’a) is true.

(equal 3 3) is true.

(equal 3 3.0) 1s false.

(equal 3.0 3.0) is true.

(equal #c(3 -4) #c(3 -4)) is true.

(equal #c(3 -4.0) #c(3 -4)) is false.

(equal (cons ’a ’b) (cons ’a ’c)) is false.
(equal (cons ’a ’b) (cons ’a ’b)) is true.
(equal ’(a . b) ’(a . b)) is true.

(progn (setq x (cons ’a ’'b)) (equal x x)) is true.
(progn (setq x ’(a . b)) (equal x x)) is true.
(equal #\A #\A) is true.

(equal "Foo'" "Foo") is true.

(equal "Foo" (copy-seq "Foo")) is true.
(equal "F00" "foo") is false.

To compare a tree of conses using eql (or any other desired predicate) on the
leaves, use tree-equal.

equalp z y [Function)

Two objects are equalp if they are equal; if they are characters and satisfy
char-equal, which ignores alphabetic case and certain other attributes of
characters; if they are numbers and have the same numerical value, even if
they are of different types; or if they have components that are all equalp.
Objects that have components are equalp if they are of the same type and
corresponding components are equalp. This test is implemented in a recursive
manner and may fail to terminate for circular structures. For conses, equalp
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is defined recursively as the two car’s being equalp and the two cdr’s being
equalp.

Two arrays are equalp if and only if they have the same number of dimen-
sions, the dimensions match, and the corresponding components are equalp.
The specializations need not match; for example, a string and a general array
that happens to contain the same characters will be equalp (though defi-
nitely not equal). If either argument has a fill pointer, the fill pointer lim-
its the number of elements examined by equalp. Because equalp performs
element-by-element comparisons of strings and ignores the alphabetic case of
characters, case distinctions are therefore also ignored when equalp compares
strings.

Two symbols can be equalp only if they are eq, that is, the same identical
object.

X3J13 voted in June 1989 (71) to specify that equalp compares compo-
nents of hash tables (see below), and to clarify that otherwise equalp never
recursively descends any structure or data type other than the ones explicitly
described above: conses, arrays (including bit-vectors and strings), and path-
names. Numbers are compared for numerical equality (see ¥), characters are
compared as if by char-equal, and all other data objects are compared as if
by eq.

Two hash tables are considered the same by equalp if and only if they
satisfy a four-part test:

- They must be of the same kind; that is, equivalent :test arguments were
given to make-hash-table when the two hash tables were created.

- They must have the same number of entries (see hash-table-count).

- For every entry (keyl, valuel) in one hash table there must be a corre-
sponding entry (key2, value2) in the other, such that key! and key2 are
considered to be the same by the :test function associated with the hash
tables.

« For every entry (key!, valuel) in one hash table and its corresponding entry
(key2, value2) in the other, such that key! and key2 are the same, equalp
must be true of valuel and value2.

The four parts of this test are carried out in the order shown, and if some
part of the test fails, equalp returns nil and the other parts of the test are
not attempted.

If equalp must compare two structures and the defstruct definition for
one used the :type option and the other did not, then equalp returns nil.
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If equalp must compare two structures and neither defstruct definition
used the :type option, then equalp returns t if and only if the structures
have the same type (that is, the same defstruct name) and the values of all
corresponding slots (slots having the same name) are equalp.

As part of the X3J13 discussion of this issue the following observations
were made. Object equality is not a concept for which there is a uniquely
determined correct algorithm. The appropriateness of an equality predicate
can be judged only in the context of the needs of some particular program.
Although these functions take any type of argument and their names sound
very generic, equal and equalp are not appropriate for every application.
Any decision to use or not use them should be determined by what they
are documented to do rather than by any abstract characterization of their
function. If neither equal nor equalp is found to be appropriate in a particu-
lar situation, programmers are encouraged to create another operator that is
appropriate rather than blame equal or equalp for “doing the wrong thing.”

Note that one consequence of the vote to change the rules of floating-point
contagion (37) (described in section 12.1) is to make equalp a true equivalence
relation on numbers.

(equalp ’a ’b) is false.

(equalp ’a ’a) is true.

(equalp 3 3) is true.

(equalp 3 3.0) is true.

(equalp 3.0 3.0) is true.

(equalp #c(3 -4) #c(3 -4)) is true.

(equalp #c(3 -4.0) #c(3 -4)) is true.

(equalp (cons ’a ’b) (cons ’a ’c)) is false.
(equalp (cons ’a ’b) (comns ’a ’b)) is true.
(equalp ’(a . b) ’(a . b)) is true.

(progn (setq x (cons ’a ’'b)) (equalp x x)) is true.
(progn (setq x ’(a . b)) (equalp x x)) is true.
(equalp #\A #\A) is true.

(equalp "Foo" "Foo") is true.

(equalp "Foo" (copy-seq "Foo")) is true.
(equalp "FOO" "foo") is true.

6.4. Logical Operators

Common Lisp provides three operators on Boolean values: and, or, and not.
Of these, and and or are also control structures because their arguments
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are evaluated conditionally. The function not necessarily examines its single
argument, and so is a simple function.

not z [Function)

not returns t if £ is nil, and otherwise returns nil. It therefore inverts its
argument considered as a Boolean value.

null is the same as not; both functions are included for the sake of clarity.
As a matter of style, it is customary to use null to check whether something
is the empty list and to use not to invert the sense of a logical value.

and { form}* [Macro)

(and forml form2 ... ) evaluates each form, one at a time, from left to
right. If any form evaluates to nil, the value nil is immediately returned
without evaluating the remaining forms. If every form but the last evaluates
to a non-nil value, and returns whatever the last form returns. Therefore
in general and can be used both for logical operations, where nil stands for
false and non-nil values stand for true, and as a conditional expression. An
example follows.

(if (and (> n 0)
(< n (length a-simple-vector))
(eq (elt a-simple-vector n) ’foo))
(princ "Foo!"))

The above expression prints Foo! if element n of a-simple-vector is the
symbol foo, provided also that n i1s indeed a valid index for a-simple-vector.
Because and guarantees left-to-right testing of its parts, elt is not called if n
is out of range.

To put it another way, the and special form does short-circuit Boolean
evaluation, like the and then operator in Ada and what in some Pascal-
like languages is called cand (for “conditional and”); the Lisp and special
form 1s unlike the Pascal or Ada and operator, which always evaluates both
arguments.

In the previous example writing

(and (>8 n 0)
(< n (length a-simple-vector))
(eq (elt a-simple-vector n) ’foo)
(princ "Foo!"))
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would accomplish the same thing. The difference is purely stylistic. Some pro-
gramimers never use expressions containing side effects within and, preferring
to use if or when for that purpose.

From the general definition, one can deduce that (and z) = z. Also, (and)
evaluates to t, which 1s an identity for this operation.

One can define and in terms of cond in this way:

(and z y z ... w) = (cond ((not z) nil)
((not y) nil)
((not z) nil)

(t w))
See if and when, which are sometimes stylistically more appropriate than
and for conditional purposes. If it is necessary to test whether a predicate is

true of all elements of a list or vector (element 0 and element 1 and element
2 and ...), then the function every may be useful.

or {form}* [Macro)

(or forml1 form2 ... ) evaluates each form, one at a time, from left to
right. If any form other than the last evaluates to something other than nil,
or immediately returns that non-nil value without evaluating the remaining
forms. If every form but the last evaluates to nil, or returns whatever
evaluation of the last of the forms returns. Therefore in general or can be
used both for logical operations, where nil stands for false and non-nil values
stand for true, and as a conditional expression.

To put it another way, the or special form does short-circuit Boolean evalua-
tion, like the or else operator in Ada and what in some Pascal-like languages
is called cor (for “conditional or”); the Lisp or special form is unlike the
Pascal or Ada or operator, which always evaluates both arguments.

From the general definition, one can deduce that (or z) = z. Also, (or)
evaluates to nil, which is the identity for this operation.

One can define or in terms of cond in this way:

(or z yz ... w) = (cond (x) () (2) ... (t w))

See if and unless, which are sometimes stylistically more appropriate than
or for conditional purposes. If it 1s necessary to test whether a predicate is
true of one or more elements of a list or vector (element 0 or element 1 or
element 2 or ...), then the function some may be useful.



Control Structure

Common Lisp provides a variety of special structures for organizing programs.
Some have to do with flow of control (control structures), while others con-
trol access to variables (environment structures). Some of these features are
implemented as special forms; others are implemented as macros, which typ-
ically expand into complex program fragments expressed in terms of special
forms or other macros.

Function application i1s the primary method for construction of Lisp pro-
grams. Operations are written as the application of a function to its ar-
guments. Usually, Lisp programs are written as a large collection of small
functions, each of which implements a simple operation. These functions op-
erate by calling one another, and so larger operations are defined in terms
of smaller ones. Lisp functions may call upon themselves recursively, either
directly or indirectly.

Locally defined functions (flet, labels) and macros (macrolet) are quite
versatile. The new symbol macro facility allows even more syntactic flexibility.

While the Lisp language is more applicative in style than statement-
oriented, it nevertheless provides many operations that produce side effects
and consequently requires constructs for controlling the sequencing of side
effects. The construct progn, which is roughly equivalent to an Algol begin-
end block with all its semicolons, executes a number of forms sequentially,
discarding the values of all but the last. Many Lisp control constructs include
sequencing implicitly, in which case they are said to provide an “implicit
progn.” Other sequencing constructs include progl and prog2.

For looping, Common Lisp provides the general iteration facility do as well
as a variety of special-purpose iteration facilities for iterating or mapping over
various data structures.

Common Lisp provides the simple one-way conditionals when and unless,
the simple two-way conditional if, and the more general multi-way condition-
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als such as cond and case. The choice of which form to use in any particular
situation is a matter of taste and style.

Constructs for performing non-local exits with various scoping disciplines
are provided: block, return, return-from, catch, and throw.

The multiple-value constructs provide an efficient way for a function to
return more than one value; see values.

7.1. Constants and Variables

Because some Lisp data objects are used to represent programs, one cannot
always notate a constant data object in a program simply by writing the
notation for the object unadorned; it would be ambiguous whether a constant
object or a program fragment was intended. The quote special form resolves
this ambiguity.

There are two kinds of variables in Common Lisp, in effect: ordinary vari-
ables and function names. There are some similarities between the two kinds,
and in a few cases there are similar functions for dealing with them, for ex-
ample boundp and fboundp. However, for the most part the two kinds of
variables are used for very different purposes: one to name defined functions,
macros, and special forms, and the other to name data objects.

X3J13 voted in March 1989 (89) to introduce the concept of a function-
name, which may be either a symbol or a two-element list whose first element
is the symbol setf and whose second element is a symbol. The primary pur-
pose of this is to allow setf expander functions to be CLOS generic functions
with user-defined methods. Many places in Common Lisp that used to re-
quire a symbol for a function name are changed to allow 2-lists as well; for
example, defun is changed so that one may write (defun (setf foo) ...),
and the function special form is changed to accept any function-name. See
also fdefinition.

By convention, any function named (setf f) should return its first argu-
ment as 1ts only value, in order to preserve the specification that setf returns
its newvalue. See setf.

Implementations are free to extend the syntax of function-names to include
lists beginning with additional symbols other than setf or lambda.

7.1.1. Reference

The value of an ordinary variable may be obtained simply by writing the
name of the variable as a form to be executed. Whether this is treated as the
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name of a special variable or a lexical variable is determined by the presence
or absence of an applicable special declaration; see chapter 9.

The following functions and special forms allow reference to the values of
constants and variables in other ways.

quote object [Special form)

(quote z) simply returns z. The object 1s not evaluated and may be any Lisp
object whatsoever. This construct allows any Lisp object to be written as a
constant value in a program. For example:

(setq a 43)
(1ist a (cons a 3)) = (43 (43 . 3))
(1ist (quote a) (quote (cons a 3)) = (a (cons a 3))

Since quote forms are so frequently useful but somewhat cumbersome to type,
a standard abbreviation is defined for them: any form f preceded by a single
quote ( ? ) character is assumed to have (quote ) wrapped around it to
make (quote f). For example:

(setq x ’(the magic quote hack))
1s normally interpreted by read to mean
(setq x (quote (the magic quote hack)))

See section 22.1.3.

X3J13 voted in January 1989 (36) to clarify that it is an error to de-
structively modify any object that appears as a constant in executable code,
whether within a quote special form or as a self-evaluating form.

See section 25.1 for a discussion of how quoted constants are treated by the
compiler.

X3J13 voted in March 1989 (147) to clarify that eval and compile are
not permitted either to copy or to coalesce (“collapse”) constants (see eq)
appearing in the code they process; the resulting program behavior must
refer to objects that are eql to the corresponding objects in the source code.
Moreover, the constraints introduced by the votes on issues (34) and (32) on
what kinds of objects may appear as constants apply only to compile-file
(see section 25.1).
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function fn [Special form)

The value of function is always the functional interpretation of fn; fn is inter-
preted as if it had appeared in the functional position of a function invocation.
In particular, if fn is a symbol, the functional definition associated with that
symbol is returned; see symbol-function. If fn is a lambda-expression, then
a “lexical closure” is returned, that is, a function that when invoked will exe-
cute the body of the lambda-expression in such a way as to observe the rules
of lexical scoping properly.

X3J13 voted in June 1988 (90) to specify that the result of a function spe-
cial form is always of type function. This implies that a form (function fn)
may be interpreted as (the (function fn)).

It is an error to use the function special form on a symbol that does not
denote a function in the lexical or global environment in which the special
form appears. Specifically, it is an error to use the function special form on
a symbol that denotes a macro or special form. Some implementations may
choose not to signal this error for performance reasons, but implementations
are forbidden to extend the semantics of function in this respect; that is, an
implementation is not allowed to define the failure to signal an error to be a
“useful” behavior.

X3J13 voted in March 1989 (89) to extend function to accept any function-
name (a symbol or a list whose caris setf—see section 7.1) as well as lambda-
expressions. Thus one may write (function (setf cadr)) to refer to the
setf expansion function for cadr.

For example:

(defun adder (x) (function (lambda (y) (+ x y))))
The result of (adder 3) is a function that will add 3 to its argument:

(setq add3 (adder 3))
(funcall add3 5) = 8

This works because function creates a closure of the inner lambda-expression
that is able to refer to the value 3 of the variable x even after control has
returned from the function adder.

More generally, a lexical closure in effect retains the ability to refer to
lexically visible bindings, not just values. Consider this code:

(defun two-funs (x)
(1list (function (lambda () x))
(function (lambda (y) (setq x y)))))
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(setq funs (two-funs 6))
(funcall (car funs)) = 6
(funcall (cadr funs) 43) = 43
(funcall (car funs)) = 43

The function two-funs returns a list of two functions, each of which refers to
the binding of the variable x created on entry to the function two-funs when
it was called with argument 6. This binding has the value 6 initially, but setq
can alter a binding. The lexical closure created for the first lambda-expression
does not “snapshot” the value 6 for x when the closure is created. The second
function can be used to alter the binding (to 43, in the example), and this
altered value then becomes accessible to the first function.

In situations where a closure of a lambda-expression over the same set of
bindings may be produced more than once, the various resulting closures may
or may not be eq, at the discretion of the implementation. For example:

(let ((x 5) (funs *()))
(dotimes (j 10)
(push #’(lambda (z)
(if (null z) (setq x 0) (+ x 2)))
funs))
funs)

The result of the above expression is a list of ten closures. Each logically
requires only the binding of x. It is the same binding in each case, so the
ten closures may or may not be the same identical (eq) object. On the other
hand, the result of the expression

(let ((funs *()))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z)
(if (null z) (setq x 0) (+ x 2))))
funs)))
funs)

1s also a list of ten closures. However, in this case no two of the closures may
be eq, because each closure is over a distinct binding of x, and these bindings
can be behaviorally distinguished because of the use of setq.

The question of distinguishable behavior is important; the result of the
simpler expression
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(let ((funs ’()))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z) (+ x z)))
funs)))
funs)

is a list of ten closures that may be pairwise eq. Although one might think
that a different binding of x is involved for each closure (which is indeed the
case), the bindings cannot be distinguished because their values are identical
and immutable, there being no occurrence of setq on x. A compiler would
therefore be justified in transforming the expression to

(let ((funs ’()))
(dotimes (j 10)
(push (function (lambda (z) (+ 5 z)))
funs))
funs)

where clearly the closures may be the same after all. The general rule; then,
is that the implementation is free to have two distinct evaluations of the same
function form produce identical (eq) closures if it can prove that the two
conceptually distinct resulting closures must in fact be behaviorally identical
with respect to invocation. This is merely a permitted optimization; a per-
fectly valid implementation might simply cause every distinct evaluation of a
function form to produce a new closure object not eq to any other.

Frequently a compiler can deduce that a closure in fact does not need to
close over any variable bindings. For example, in the code fragment

(mapcar (function (lambda (x) (+ x 2))) y)

the function (lambda (x) (+ x 2)) contains no references to any outside
entity. In this important special case, the same “closure” may be used as
the value for all evaluations of the function special form. Indeed, this value
need not be a closure object at all; it may be a simple compiled function
containing no environment information. This example is simply a special case
of the foregoing discussion and is included as a hint to implementors familiar
with previous methods of implementing Lisp. The distinction between closures
and other kinds of functions is somewhat pointless, actually, as Common Lisp
defines no particular representation for closures and no way to distinguish
between closures and non-closure functions. All that matters i1s that the rules
of lexical scoping be obeyed.
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Since function forms are so frequently useful but somewhat cumbersome
to type, a standard abbreviation is defined for them: any form f preceded by
#’ (# followed by an apostrophe) is assumed to have (function ) wrapped
around 1t to make (function f). For example,

(remove-if #’numberp ’(1 a b 3))
1s normally interpreted by read to mean
(remove-if (function numberp) ’(1 a b 3))

See section 22.1.4.

symbol-value symbol [Function)

symbol-value returns the current value of the dynamic (special) variable
named by symbol. An error occurs if the symbol has no value; see boundp
and makunbound. Note that constant symbols are really variables that cannot
be changed, and so symbol-value may be used to get the value of a named
constant. In particular, symbol-value of a keyword will return that keyword.

symbol-value cannot access the value of a lexical variable.

This function is particularly useful for implementing interpreters for lan-
guages embedded in Lisp. The corresponding assignment primitive is set;
alternatively, symbol-value may be used with setf.

symbol-function symbol [Function)

symbol-function returns the current global function definition named by
symbol. An error is signalled if the symbol has no function definition; see
fboundp. Note that the definition may be a function or may be an object
representing a special form or macro. In the latter case, however, it is an error
to attempt to invoke the object as a function. If it is desired to process macros,
special forms, and functions equally well, as when writing an interpreter, it is
best first to test the symbol with macro-function and special-form-p and
then to invoke the functional value only if these two tests both yield false.

This function is particularly useful for implementing interpreters for lan-
guages embedded in Lisp.

symbol-function cannot access the value of a lexical function name pro-
duced by flet or labels; it can access only the global function value.

The global function definition of a symbol may be altered by using setf
with symbol-function. Performing this operation causes the symbol to have
only the specified definition as its global function definition; any previous
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definition, whether as a macro or as a function, is lost. It is an error to
attempt to redefine the name of a special form (see table 5-1).

X3J13 voted in June 1988 (90) to clarify the behavior of symbol-function
in the light of the redefinition of the type function.

- It 1s permissible to call symbol-function on any symbol for which fboundp
returns true. Note that fboundp must return true for a symbol naming a
macro or a special form.

- If £boundp returns true for a symbol but the symbol denotes a macro or
special form, then the value returned by symbol-function is not well-
defined but symbol-function will not signal an error.

- When symbol-function is used with setf the new value must be of type
function. It is an error to set the symbol-function of a symbol to a
symbol, a list, or the value returned by symbol-function on the name of
a macro or a special form.

fdefinition function-name [Function)

X3J13 voted in March 1989 (89) to add the function fdefinition to the
language. It 1s exactly like symbol-function except that its argument may
be any function-name (a symbol or a list whose caris setf—see section 7.1); it
returns the current global function definition named by the argument function-
name. One may use fdefinition with setf to change the current global
function definition associated with a function-name.

boundp symbol [Function)

boundp is true if the dynamic (special) variable named by symbol has a value;
otherwise, it returns nil.
See also set and makunbound.

fboundp symbol [Function)

fboundp is true if the symbol has a global function definition. Note that
fboundp is true when the symbol names a special form or macro. macro-
function and special-form-p may be used to test for these cases.

X3J13 voted in June 1988 (90) to emphasize that, despite the tightening
of the definition of the type function, fboundp must return true when the
argument names a special form or macro.

See also symbol-function and fmakunbound.
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X3J13 voted in March 1989 (89) to extend fboundp to accept any function-
name (a symbol or a list whose car is setf—see section 7.1). Thus one
may write (fboundp ’(setf cadr)) to determine whether a setf expansion
function has been globally defined for cadr.

special-form-p symbol [Function)

The function special-form-p takes a symbol. If the symbol globally names
a special form, then a non-nil value is returned; otherwise nil is returned. A
returned non-nil value is typically a function of implementation-dependent
nature that can be used to interpret (evaluate) the special form.

It is possible for both special-form-p and macro-function to be true of a
symbol. This is possible because an implementation is permitted to implement
any macro also as a special form for speed. On the other hand, the macro
definition must be available for use by programs that understand only the
standard special forms listed in table 5-1.

7.1.2. Assignment

The following facilities allow the value of a variable (more specifically, the
value associated with the current binding of the variable) to be altered. Such
alteration is different from establishing a new binding. Constructs for estab-
lishing new bindings of variables are described in section 7.5.

setq {var form}* [Special form]

The special form (setq varl forml var?2 form2 ...) is the “simple variable
assignment statement” of Lisp. First form{ is evaluated and the result is
stored in the variable varl, then form2 is evaluated and the result stored in
var2, and so forth. The variables are represented as symbols, of course, and
are interpreted as referring to static or dynamic instances according to the
usual rules. Therefore setq may be used for assignment of both lexical and
special variables.

setq returns the last value assigned, that is, the result of the evaluation of
its last argument. As a boundary case, the form (setq) is legal and returns
nil. There must be an even number of argument forms. For example, in

(setq x (+ 32 1) y (cons x nil))
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x 18 set to 6, y 1s set to (8), and the setq returns (6). Note that the first
assignment is performed before the second form is evaluated, allowing that
form to use the new value of x.

See also the description of setf, the Common Lisp “general assignment
statement” that is capable of assigning to variables, array elements, and other
locations.

Some programmers choose to avoid setq as a matter of style, always using
setf for any kind of structure modification. Others use setq with simple
variable names and setf with all other generalized variables.

X3J13 voted in March 1989 (173) to specify that if any var refers not to an
ordinary variable but to a binding made by symbol-macrolet, then that var
is handled as if setf had been used instead of setq.

psetq {var form}* [Macro)

A psetq form is just like a setq form, except that the assignments happen in
parallel. First all of the forms are evaluated, and then the variables are set to
the resulting values. The value of the psetq form i1s nil. For example:

(setq a 1)
(setq b 2)
(psetq a b b a)
a = 2

b=1

In this example, the values of a and b are exchanged by using parallel assign-
ment. (If several variables are to be assigned in parallel in the context of a
loop, the do construct may be appropriate.)

See also the description of psetf, the Common Lisp “general parallel as-
signment statement” that is capable of assigning to variables, array elements,
and other locations.

X3J13 voted in March 1989 (173) to specify that if any var refers not to an
ordinary variable but to a binding made by symbol-macrolet, then that var
is handled as if psetf had been used instead of psetq.

set symbol value [Function)

set allows alteration of the value of a dynamic (special) variable. set causes
the dynamic variable named by symbol to take on value as its value.

X3J13 voted in January 1989 (7) to clarify that the value may be any Lisp
datum whatsoever.
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Only the value of the current dynamic binding is altered; if there are no
bindings in effect, the most global value is altered. For example,

(set (if (eq a b) ’c ’d) ’foo)

will either set ¢ to foo or set d to foo, depending on the outcome of the test
(eq a b).

set returns value as its result.

set cannot alter the value of a local (lexically bound) variable. The special
form setq is usually used for altering the values of variables (lexical or dy-
namic) in programs. set is particularly useful for implementing interpreters
for languages embedded in Lisp. See also progv, a construct that performs
binding rather than assignment of dynamic variables.

makunbound symbol [Function)
fmakunbound symbol [Function)

makunbound causes the dynamic (special) variable named by symbol to become
unbound (have no value). fmakunbound does the analogous thing for the
global function definition named by symbol. For example:

(setq a 1)

a=>1
(makunbound ’a)

a = causes an error

(defun foo (x) (+ x 1))
(foo 4) = 5
(fmakunbound ’foo)

(foo 4) = causes an error

Both functions return symbol as the result value.

X3J13 voted in March 1989 (89) to extend fmakunbound to accept any
function-name (a symbol or a list whose car is setf—see section 7.1). Thus
one may write (fmakunbound ’(setf cadr)) to remove any global definition
of a setf expansion function for cadr.

7.2. Generalized Variables

In Lisp, a variable can remember one piece of data, that 1s, one Lisp object.
The main operations on a variable are to recover that object and to alter the
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variable to remember a new object; these operations are often called access
and update operations. The concept of variables named by symbols can be
generalized to any storage location that can remember one piece of data, no
matter how that location is named. Examples of such storage locations are
the car and cdr of a cons, elements of an array, and components of a structure.

For each kind of generalized variable, typically there are two functions that
implement the conceptual access and update operations. For a variable, merely
mentioning the name of the variable accesses it, while the setq special form
can be used to update it. The function car accesses the car of a cons, and the
function rplaca updates it. The function symbol-value accesses the dynamic
value of a variable named by a given symbol, and the function set updates
it.

Rather than thinking about two distinct functions that respectively access
and update a storage location somehow deduced from their arguments, we
can instead simply think of a call to the access function with given arguments
as a name for the storage location. Thus, just as x may be considered a name
for a storage location (a variable), so (car x) is a name for the car of some
cons (which is in turn named by x). Now, rather than having to remember
two functions for each kind of generalized variable (having to remember, for
example, that rplaca corresponds to car), we adopt a uniform syntax for
updating storage locations named in this way, using the setf macro. This is
analogous to the way we use the setq special form to convert the name of a
variable (which is also a form that accesses it) into a form that updates it.
The uniformity of this approach is illustrated in the following table.

Access Function = Update Function Update Using setf

X (setq x datum) (setf x datum)
(car x) (rplaca x datum) (setf (car x) datum)
(symbol-value x) (set x datum) (setf (symbol-value x) datum)

setf is actually a macro that examines an access form and produces a call to
the corresponding update function.

Given the existence of setf in Common Lisp, it is not necessary to have
setq, rplaca, and set; they are redundant. They are retained in Common
Lisp because of their historical importance in Lisp. However, most other
update functions (such as putprop, the update function for get) have been
eliminated from Common Lisp in the expectation that setf will be uniformly
used in their place.
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setf {place newvalue}* [Macro)

(setf place newvalue) takes a form place that when evaluated accesses a
data object in some location and “inverts” it to produce a corresponding
form to update the location. A call to the setf macro therefore expands into
an update form that stores the result of evaluating the form newvalue into
the place referred to by the access form.

If more than one place-newvalue pair is specified, the pairs are processed
sequentially; that is,

(setf placel newvaluel
place2 newvalue2)

placen newvaluen)
1s precisely equivalent to

(progn (setf placel newvaluel)
(setf place2 newvalue?)

(setf placen newvaluen))

For consistency, it is legal to write (setf), which simply returns nil.
The form place may be any one of the following:

+ The name of a variable (either lexical or dynamic).

- A function call form whose first element is the name of any one of the
following functions:

aref car svref

nth cdr get

elt caar getf symbol-value
rest cadr gethash symbol-function
first cdar documentation symbol-plist
second cddr fill-pointer macro-function
third caaar caaaar cdaaar

fourth caadr caaadr cdaadr

fifth cadar caadar cdadar

sixth caddr caaddr cdaddr

seventh cdaar cadaar cddaar

eighth cdadr cadadr cddadr

ninth cddar caddar cdddar

tenth cdddr cadddr cddddr
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X3J13 voted in March 1988 (6) to add row-major-aref to this list.

X3J13 voted in June 1989 (49) to add compiler-macro-function to this
list.

X3J13 voted in March 1989 (89) to clarify that this rule applies only when
the function name refers to a global function definition and not to a locally
defined function or macro.

- A function call form whose first element is the name of a selector function
constructed by defstruct.
X3J13 voted in March 1989 (89) to clarify that this rule applies only when

the function name refers to a global function definition and not to a locally
defined function or macro.

- A function call form whose first element is the name of any one of the
following functions, provided that the new value is of the specified type so
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that it can be used to replace the specified “location” (which is in each of
these cases not truly a generalized variable):

Function Name Required Type

char string-char
schar string-char
bit bit

sbit bit

subseq sequence

X3J13 voted in March 1989 (11) to eliminate the type string-char and
to redefine string to be the union of one or more specialized vector types,
the types of whose elements are subtypes of the type character. In the
preceding table, the type string-char should be replaced by some such
phrase as “the element-type of the argument vector.”

X3J13 voted in March 1989 (89) to clarify that this rule applies only when
the function name refers to a global function definition and not to a locally
defined function or macro.

In the case of subseq, the replacement value must be a sequence whose
elements may be contained by the sequence argument to subseq. (Note
that this is not so stringent as to require that the replacement value be
a sequence of the same type as the sequence of which the subsequence is
specified.) If the length of the replacement value does not equal the length
of the subsequence to be replaced, then the shorter length determines the
number of elements to be stored, as for the function replace.

- A function call form whose first element is the name of any one of the
following functions, provided that the specified argument to that function
i1s in turn a place form; in this case the new place has stored back into it
the result of applying the specified “update” function (which is in each of
these cases not a true update function):

Function Name Argument That Is a place Update Function Used

char-bit first set-char-bit
1db second dpb
mask-field second deposit-field

X3J13 voted in March 1989 (11) to eliminate char-bit and set-char-bit.

X3J13 voted in March 1989 (89) to clarify that this rule applies only when
the function name refers to a global function definition and not to a locally
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defined function or macro.

- A the type declaration form, in which case the declaration is transferred to
the newvalue form, and the resulting setf form is analyzed. For example,

(setf (the integer (cadr x)) (+y 3))
is processed as if it were
(setf (cadr x) (the integer (+ y 3)))

- A call to apply where the first argument form is of the form #’ name, that
18, (function name), where name is the name of a function, calls to which
are recognized as places by setf. Suppose that the use of setf with apply
looks like this:

(setf (apply #’name zl z2 ... zn rest) z0)

The setf method for the function name must be such that
(setf (name zI z2 ... zm) z0)

expands into a store form

(storefn z1y zis ... zi zm)

That is, it must expand into a function call such that all arguments but
the last may be any permutation or subset of the new value z0 and the
arguments of the access form, but the last argument of the storing call
must be the same as the last argument of the access call. See define-
setf-method for more details on accessing and storing forms.

Given this, the setf-of-apply form shown above expands into
(apply #’storefn ziy wiy ... zi rest)

As an example, suppose that the variable indexes contains a list of sub-
scripts for a multidimensional array foo whose rank is not known until run
time. One may access the indicated element of the array by writing

(apply #’aref foo indexes)

and one may alter the value of the indicated element to that of newvalue
by writing

(setf (apply #’aref foo indexes) newvalue)
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X3J13 voted in March 1989 (89) to clarify that this rule applies only when
the function name apply refers to the global function definition and not to
a locally defined function or macro named apply.

« A macro call, in which case setf expands the macro call and then analyzes
the resulting form.

X3J13 voted in March 1989 (89) to clarify that this step uses macroexpand-
1, not macroexpand. This allows the chance to apply any of the rules
preceding this one to any of the intermediate expansions.

« Any form for which a defsetf or define-setf-method declaration has
been made.

X3J13 voted in March 1989 (89) to clarify that this rule applies only when
the function name in the form refers to a global function definition and not
to a locally defined function or macro.

X3J13 voted in March 1989 (89) to add one more rule to the preceding list,
coming after all those listed above:

+ Any other list whose first element is a symbol (call it f). In this case, the
call to setf expands into a call to the function named by the list (setf f)
(see section 7.1). The first argument is the new value and the remaining
arguments are the values of the remaining elements of place. This expansion
occurs regardless of whether either f or (setf f) is defined as a function
locally, globally, or not at all. For example,

(setf (f argl arg? ...) newvalue)
expands into a form with the same effect and value as

(let ((#:templ argl) ; Force correct order of evaluation
(#:temp2 arg?2)

(#:temp0 newvalue))
(funcall (function (setf f))
#:temp0
#:templ
#:temp2 ...))

By convention, any function named (setf f) should return its first ar-
gument as its only value, in order to preserve the specification that setf
returns its newvalue.

X3J13 voted in March 1989 (173) to add this case as well:
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- A variable reference that refers to a symbol macro definition made by
symbol-macrolet, in which case setf expands the reference and then an-
alyzes the resulting form.
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setf carefully arranges to preserve the usual left-to-right order in which
the various subforms are evaluated. On the other hand, the exact expansion
for any particular form is not guaranteed and may even be implementation-
dependent; all that is guaranteed is that the expansion of a setf form will be
an update form that works for that particular implementation, and that the
left-to-right evaluation of subforms is preserved.

The ultimate result of evaluating a setf form is the value of newvalue.
Therefore (setf (car x) y) does not expand into precisely (rplaca x y),
but into something more like

(let ((G1 x) (G2 y)) (rplaca Gl G2) G2)

the precise expansion being implementation-dependent.

The user can define new setf expansions by using defsetf.

X3J13 voted in June 1989 (159) to extend the specification of setf to allow
a place whose setf method has more than one store variable (see define-
setf-method). In such a case as many values are accepted from the newvalue
form as there are store variables; extra values are ignored and missing values
default to nil, as is usual in situations involving multiple values.

A proposal was submitted to X3J13 in September 1989 to add a setf
method for values so that one could in fact write, for example,

(setf (values quotient remainder)
(truncate linewidth tabstop))

but unless this proposal is accepted users will have to define a setf method
for values themselves (not a difficult task).

psetf {place newvalue}* [Macro)

psetf is like setf except that if more than one place-newvalue pair is specified,
then the assignments of new values to places are done in parallel. More
precisely, all subforms that are to be evaluated are evaluated from left to
right; after all evaluations have been performed, all of the assignments are
performed in an unpredictable order. (The unpredictability matters only if
more than one place form refers to the same place.) psetf always returns
nil.

X3J13 voted in June 1989 (159) to extend the specification of psetf to allow
a place whose setf method has more than one store variable (see define-
setf-method). In such a case as many values are accepted from the newvalue
form as there are store variables; extra values are ignored and missing values
default to nil, as is usual in situations involving multiple values.
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shiftf {place}T newvalue [Macro)

Each place form may be any form acceptable as a generalized variable to
setf. In the form (shiftf placel place2 ... placen newvalue), the values
in placel through placen are accessed and saved, and newwvalue 1s evaluated,
for a total of n 4+ 1 values in all. Values 2 through n + 1 are then stored into
placel through placen, and value 1 (the original value of place!) is returned.
It 1s as if all the places form a shift register; the newvalue is shifted in from
the right, all values shift over to the left one place, and the value shifted out
of placel 1s returned. For example:

(setq x (list ’a ’b ’c)) = (a b ¢)

(shiftf (cadr x) ’'z) = b
and now x = (a z ¢)

(shiftf (cadr x) (cddr x) ’q) = z
and now x = (a (¢) . q)

The effect of (shiftf placel place? ... placen newvalue) is equivalent to

(let ((varl placel)
(var2 place2)

(varn placen))
(setf placel var2)
(setf place2 var3)

(setf placen newvalue)
varl)

except that the latter would evaluate any subforms of each place twice,
whereas shiftf takes care to evaluate them only once. For example:

(setq n 0)

(setq x ’(a b ¢ d))

(shiftf (nth (setqn (+n 1)) x) ’z2) = b
and now x = (a z ¢ d)

but

(setq n 0)
(setq x ’(a b ¢ d))
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(progl (nth (setgn (+ n 1)) x)
(setf (nth (setqn (+n 1)) x) ’2)) = b
and now x = (a b z d)

Moreover, for certain place forms shiftf may be significantly more efficient
than the progl version.

X3J13 voted in June 1989 (159) to extend the specification of shiftf to al-
low a place whose setf method has more than one store variable (see define-
setf-method). In such a case as many values are accepted from the newvalue
form as there are store variables; extra values are ignored and missing values
default to nil, as is usual in situations involving multiple values.

Rationale: shiftf and rotatef have been included in Common Lisp as generaliza-
tions of two-argument versions formerly called swapf and exchf. The two-argument
versions have been found to be very useful, but the names were easily confused. The
generalization to many argument forms and the change of names were both inspired
by the work of Suzuki [47], which indicates that use of these primitives can make
certain complex pointer-manipulation programs clearer and easier to prove correct.

rotatef {place}* [Macro)

Each place form may be any form acceptable as a generalized variable to
setf. In the form (rotatef placel place2 ... placen), the values in placel
through placen are accessed and saved. Values 2 through n and value 1 are
then stored into placel through placen. 1t is as if all the places form an end-
around shift register that is rotated one place to the left, with the value of
placel being shifted around the end to placen. Note that (rotatef placel
place2) exchanges the contents of placei and place?.

The effect of (rotatef placel place2 ... placen) is roughly equivalent to

(psetf placel place2
place2 place3

placen placel)

except that the latter would evaluate any subforms of each place twice,
whereas rotatef takes care to evaluate them only once. Moreover, for certain
place forms rotatef may be significantly more efficient.

rotatef always returns nil.

X3J13 voted in June 1989 (159) to extend the specification of rotatef
to allow a place whose setf method has more than one store variable (see
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define-setf-method). In such a case as many values are accepted from
the newvalue form as there are store variables; extra values are ignored and
missing values default to nil, as is usual in situations involving multiple
values.

Other macros that manipulate generalized variables include getf, remf,
incf, dect, push, pop, assert, ctypecase, and ccase.

Macros that manipulate generalized variables must guarantee the “obvious”
semantics: subforms of generalized-variable references are evaluated exactly
as many times as they appear in the source program, and they are evaluated
in exactly the same order as they appear in the source program.

In generalized-variable references such as shiftf, incf, push, and setf of
1db, the generalized variables are both read and written in the same refer-
ence. Preserving the source program order of evaluation and the number of
evaluations i1s particularly important.

As an example of these semantic rules, in the generalized-variable refer-
ence (setf reference value) the value form must be evaluated after all the
subforms of the reference because the value form appears to the right of them.

The expansion of these macros must consist of code that follows these rules
or has the same effect as such code. This is accomplished by introducing tem-
porary variables bound to the subforms of the reference. As an optimization
in the implementation, temporary variables may be eliminated whenever it
can be proved that removing them has no effect on the semantics of the pro-
gram. For example, a constant need never be saved in a temporary variable.
A variable, or for that matter any form that does not have side effects, need
not be saved in a temporary variable if it can be proved that its value will not
change within the scope of the generalized-variable reference.

Common Lisp provides built-in facilities to take care of these semantic com-
plications and optimizations. Since the required semantics can be guaranteed
by these facilities, the user does not have to worry about writing correct code
for them, especially in complex cases. Even experts can become confused and
make mistakes while writing this sort of code.

X3J13 voted in March 1988 (146) to clarify the preceding discussion about
the order of evaluation of subforms in calls to setf and related macros. The
general intent 1s clear: evaluation proceeds from left to right whenever possi-
ble. However, the left-to-right rule does not remove the obligation on writers
of macros and define-setf-method to work to ensure left-to-right order of
evaluation.

Let it be emphasized that, in the following discussion, a form is something
whose syntactic use is such that it will be evaluated. A subform means a form
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that is nested inside another form, not merely any Lisp object nested inside
a form regardless of syntactic context.

The evaluation ordering of subforms within a generalized variable reference
is determined by the order specified by the second value returned by get-
setf-method. For all predefined generalized variable references (getf, 1db),
this order of evaluation is exactly left-to-right. When a generalized variable
reference i1s derived from a macro expansion, this rule is applied after the
macro 1s expanded to find the appropriate generalized variable reference.

This is intended to make it clear that if the user writes a defmacro or
define-setf-method macro that doesn’t preserve left-to-right evaluation or-
der, the order specified in the user’s code holds. For example, given

(defmacro wrong-order (x y) ‘(getf ,y ,x))
then
(push value (wrong-order placel place2))

will evaluate place? first and then placel because that is the order they are
evaluated in the macro expansion.

For the macros that manipulate generalized variables (push, pushnew, getf,
remf, incf, decf, shiftf rotatef, psetf, setf, pop, and those defined with
define-modify-macro) the subforms of the macro call are evaluated exactly
once in left-to-right order, with the subforms of the generalized variable ref-
erences evaluated in the order specified above.

Each of push, pushnew, getf, remf, incf, decf, shiftf, rotatef, psetf,
and pop evaluates all subforms before modifying any of the generalized vari-
able locations. Moreover, setf itself, in the case when a call on it has more
than two arguments, performs its operation on each pair in sequence. That
is, in

(setf placel valuel place2 value2 ...)

the subforms of placel and waluel are evaluated, the location specified by
placel is modified to contain the value returned by valuel, and then the rest
of the setf form is processed in a like manner.

For the macros check-type, ctypecase, and ccase, subforms of the gener-
alized variable reference are evaluated once per test of a generalized variable,
but they may be evaluated again if the type check fails (in the case of check-
type) or if none of the cases holds (in ctypecase or ccase).

For the macro assert, the order of evaluation of the generalized variable
references is not specified.
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Another reason for building in these functions is that the appropriate opti-
mizations will differ from implementation to implementation. In some imple-
mentations most of the optimization is performed by the compiler, while in
others a simpler compiler is used and most of the optimization is performed
in the macros. The cost of binding a temporary variable relative to the cost of
other Lisp operations may differ greatly between one implementation and an-
other, and some implementations may find it best never to remove temporary
variables except in the simplest cases.

A good example of the issues involved can be seen in the following
generalized-variable reference:

(incf (1db byte-field variable))
This ought to expand into something like

(setq variable
(dpb (1+ (1db byte-field variable))
byte-field
variable))

In this expansion example we have ignored the further complexity of return-
ing the correct value, which is the incremented byte, not the new value of
variable. Note that the variable byte-field is evaluated twice, and the
variable variable is referred to three times: once as the location in which to
store a value, and twice during the computation of that value.

Now consider this expression:

(incf (1db (aref byte-fields (incf i))
(aref (determine-words-array) i)))

It ought to expand into something like this:

(let ((templ (aref byte-fields (incf i)))
(temp2 (determine-words-array)))
(setf (aref temp2 i)
(dpb (1+ (1db templ (aref temp2 1i)))
templ
(aref temp2 i))))

Again we have ignored the complexity of returning the correct value. What
is important here is that the expressions (incf i) and (determine-words-—
array) must not be duplicated because each may have a side effect or be
affected by side effects.
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X3J13 voted in January 1989 (160) to specify more precisely the order of
evaluation of subforms when setf is used with an access function that itself
takes a place as an argument, for example, 1db, mask-field, and getf. (The
vote also discussed the function char-bit, but another vote (11) removed that
function from the language.) The setf methods for such accessors produce
expansions that effectively require explicit calls to get-setf-method.

The code produced as the macro expansion of a setf form that itself admits
a generalized variable as an argument must essentially do the following major
steps:

- It evaluates the value-producing subforms, in left-to-right order, and binds
the temporary variables to them; this is called binding the temporaries.

- It reads the value from the generalized variable, using the supplied accessing
form, to get the old value; this is called doing the access. Note that this
is done after all the evaluations of the preceding step, including any side
effects they may have.

« It binds the store variable to a new value, and then installs this new value
into the generalized variable using the supplied storing form; this is called
doing the store.

Doing the access for a generalized variable reference is not part of the series
of evaluations that must be done in left-to-right order.

The place-specifier forms 1db, mask-field, and getf admit (other) place
specifiers as arguments. During the setf expansion of these forms, it is neces-
sary to call get-setf-method to determine how the inner, nested generalized
variable must be treated.

In a form such as

(setf (1db byte-spec place-form) newvalue-form)

the place referred to by the place-form must always be both accessed and
updated; note that the update is to the generalized variable specified by place-
form, not to any object of type integer.

Thus this call to setf should generate code to do the following:

- Evaluate byte-spec and bind into a temporary
- Bind the temporaries for place-form
- Evaluate newvalue-form and bind into the store variable

+ Do the access to place-form
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- Do the store into place-form with the given bit-field of the accessed integer
replaced with the value in the store variable

If the evaluation of newvalue-form alters what is found in the given place—
such as setting a different bit-field of the integer—then the change of the bit-
field denoted by byte-spec will be to that altered integer, because the access
step must be done after the newvalue-form evaluation. Nevertheless, the eval-
uations required for binding the temporaries are done before the evaluation
of the newvalue-form, thereby preserving the required left-to-right evaluation
order.

The treatment of mask-field is similar to that of 1db.

In a form such as:

(setf (getf place-form ind-form) newvalue-form)

the place referred to by the place-form must always be both accessed and
updated; note that the update is to the generalized variable specified by
place-form, not necessarily to the particular list which is the property list
in question.

Thus this call to setf should generate code to do the following:

- Bind the temporaries for place-form

- Evaluate ind-form and bind into a temporary

- Evaluate the newvalue-form and bind into the store variable
+ Do the access to place-form

+ Do the store into place-form with a possibly new property list obtained by
combining the results of the evaluations and the access

If the evaluation of newvalue-form alters what is found in the given place—
such as setting a different named property in the list—then the change of the
property denoted by tnd-form will be to that altered list, because the access
step 1s done after the newvalue-form evaluation. Nevertheless, the evaluations
required for binding the temporaries are done before the evaluation of the
newvalue-form, thereby preserving the required left-to-right evaluation order.

Note that the phrase “possibly new property list” treats the implementation
of property lists as a “black box”; it can mean that the former property list
1s somehow destructively re-used, or it can mean partial or full copying of it.
A side effect may or may not occur; therefore setf must proceed as if the
resultant property list were a different copy needing to be stored back into
the generalized variable.



CONTROL STRUCTURE 145

The Common Lisp facilities provided to deal with these semantic issues
include:

+ Built-in macros such as setf and push that follow the semantic rules.

- The define-modify-macro macro, which allows new generalized-variable
manipulating macros (of a certain restricted kind) to be defined easily. Tt
takes care of the semantic rules automatically.

- The defsetf macro, which allows new types of generalized-variable refer-
ences to be defined easily. It takes care of the semantic rules automatically.

- The define-setf-method macro and the get-setf-method function,
which provide access to the internal mechanisms when it is necessary to de-
fine a complicated new type of generalized-variable reference or generalized-
variable-manipulating macro.

Also important are the changes that allow lexical environments to be used
in appropriate ways in setf methods.

define-modify-macro name lambda-list function [doc-string) [Macro)

This macro defines a read-modify-write macro named name. An example of
such a macro is incf. The first subform of the macro will be a generalized-
variable reference. The function is literally the function to apply to the old
contents of the generalized-variable to get the new contents; it is not evaluated.
lambda-list describes the remaining arguments for the function; these argu-
ments come from the remaining subforms of the macro after the generalized-
variable reference. lambda-list may contain &optional and &rest markers.
(The &key marker is not permitted here; &rest suffices for the purposes of
define-modify-macro.) doc-string is documentation for the macro name be-
ing defined.

The expansion of a define-modify-macro is equivalent to the following,
except that it generates code that follows the semantic rules outlined above.

(defmacro name (reference . lambda-list)

doc-string
“(setf ,reference
(function ,reference ,argl ,arg2 ...)))
where argl, arg2, ..., are the parameters appearing in lambda-list; appropriate

provision is made for a &rest parameter.
As an example, incf could have been defined by:
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(define-modify-macro incf (&optional (delta 1)) +)
An example of a possibly useful macro not predefined in Common Lisp is
(define-modify-macro unionf (other-set &rest keywords) union)

X3J13 voted in March 1988 (96) to specify that define-modify-macro
creates macros that take &environment arguments and perform the equivalent
of correctly passing such lexical environments to get-setf-method in order
to correctly maintain lexical references.

defsetf access-fn {update-fn [doc-string] | [Macro)
lambda-list (store-variable)
[ {declaration}* | doc-string] { form}*}

This defines how to setf a generalized-variable reference of the form (access—
fn ...). The value of a generalized-variable reference can always be obtained
simply by evaluating it, so access-fn should be the name of a function or a
macro.

The user of defsetf provides a description of how to store into the
generalized-variable reference and return the value that was stored (because
setf is defined to return this value). The implementation of defsetf takes
care of ensuring that subforms of the reference are evaluated exactly once and
in the proper left-to-right order. In order to do this, defsetf requires that
access-fn be a function or a macro that evaluates its arguments, behaving like
a function. Furthermore, a setf of a call on access-fn will also evaluate all of
access-fn’s arguments; it cannot treat any of them specially. This means that
defsetf cannot be used to describe how to store into a generalized variable
that is a byte, such as (1db field reference). To handle situations that do
not fit the restrictions imposed by defsetf, use define-setf-method, which
gives the user additional control at the cost of increased complexity.

A defsetf declaration may take one of two forms. The simple form 1s

(defsetf access-fn update-fn [doc-string])

The update-fn must name a function (or macro) that takes one more argument
than access-fn takes. When setf is given a place that is a call on access-fn, 1t
expands into a call on update-fn that is given all the arguments to access-fn
and also, as its last argument, the new value (which must be returned by
update-fn as its value). For example, the effect of

(defsetf symbol-value set)
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is built into the Common Lisp system. This causes the expansion
(setf (symbol-value foo) fu) — (set foo fu)

for example. Note that

(defsetf car rplaca)

would be incorrect because rplaca does not return its last argument.
The complex form of defsetf looks like

(defsetf access-fn lambda-list (store-variable) . body)

and resembles defmacro. The body must compute the expansion of a setf of
a call on access-fn.

The lambda-list describes the arguments of access-fn. &optional, &rest,
and &key markers are permitted in lambda-list. Optional arguments may have
defaults and “supplied-p” flags. The store-variable describes the value to be
stored into the generalized-variable reference.

Rationale: The store-variable is enclosed in parentheses to provide for an exten-
sion to multiple store variables that would receive multiple values from the second
subform of setf. The rules given below for coding setf methods discuss the proper
handling of multiple store variables to allow for the possibility that this extension
may be incorporated into Common Lisp in the future.

The body forms can be written as if the variables in the lambda-list were
bound to subforms of the call on access-fn and the store-variable were bound to
the second subform of setf. However, this is not actually the case. During the
evaluation of the body forms, these variables are bound to names of temporary
variables; generated as if by gensym or gentemp, that will be bound by the
expansion of setf to the values of those subforms. This binding permits
the body forms to be written without regard for order-of-evaluation issues.
defsetf arranges for the temporary variables to be optimized out of the final
result in cases where that is possible. In other words, an attempt is made by
defsetf to generate the best code possible in a particular implementation.

Note that the code generated by the body forms must include provision for
returning the correct value (the value of store-variable). This is handled by
the body forms rather than by defsetf because in many cases this value can
be returned at no extra cost, by calling a function that simultaneously stores
into the generalized variable and returns the correct value.

An example of the use of the complex form of defsetf:
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(defsetf subseq (sequence start &optional end) (new-sequence)
‘(progn (replace ,sequence ,new-sequence
:startl ,start :endl ,end)
,lew—sequence) )

X3J13 voted in March 1988 (78) to specify that the body of the expander
function defined by the complex form of defsetf is implicitly enclosed in
a block construct whose name is the same as the name of the access-fn.
Therefore return—-from may be used to exit from the function.

X3J13 voted in March 1989 (50) to clarify that, while defining forms nor-
mally appear at top level, it is meaningful to place them in non-top-level
contexts; the complex form of defsetf must define the expander function
within the enclosing lexical environment, not within the global environment.

The underlying theory by which setf and related macros arrange to con-
form to the semantic rules given above is that from any generalized-variable
reference one may derive its “setf method,” which describes how to store
into that reference and which subforms of it are evaluated.

Compatibility note: To avoid confusion, it should be noted that the use of the
word “method” here in connection with setf has nothing to do with its use in Lisp
Machine Lisp in connection with message-passing and the Lisp Machine Lisp “flavor
system.”

And of course 1t also has nothing to do with the methods in the Common Lisp
Object System (12).

Given knowledge of the subforms of the reference, it is possible to avoid
evaluating them multiple times or in the wrong order. A setf method for a
given access form can be expressed as five values:

« A list of temporary variables

« A list of value forms (subforms of the given form) to whose values the
temporary variables are to be bound

+ A second list of temporary variables, called store variables
« A storing form

« An accessing form

The temporary variables will be bound to the values of the value forms as if
by let#; that is, the value forms will be evaluated in the order given and may
refer to the values of earlier value forms by using the corresponding variables.
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The store variables are to be bound to the values of the newvalue form, that
is, the values to be stored into the generalized variable. In almost all cases
only a single value is to be stored, and there is only one store variable.

The storing form and the accessing form may contain references to the
temporary variables (and also, in the case of the storing form, to the store
variables). The accessing form returns the value of the generalized variable.
The storing form modifies the value of the generalized variable and guarantees
to return the values of the store variables as its values; these are the correct
values for setf to return. (Again, in most cases there is a single store variable
and thus a single value to be returned.) The value returned by the accessing
form is, of course, affected by execution of the storing form, but either of these
forms may be evaluated any number of times and therefore should be free of
side effects (other than the storing action of the storing form).

The temporary variables and the store variables are generated names, as if
by gensym or gentemp, so that there is never any problem of name clashes
among them, or between them and other variables in the program. This is
necessary to make the special forms that do more than one setf in parallel
work properly; these are psetf, shiftf, and rotatef. Computation of the
setf method must always create new variable names; it may not return the
same ones every time.

Some examples of setf methods for particular forms:

- For a variable x:

O

O

(g0001)

(setq x g0001)
x

« For (car exp):

(£0002)

(exp)

(g0003)

(progn (rplaca g0002 g0003) g0003)
(car g0002)

- For (subseq seq s €):

(50004 g0005 g0006)
(seq s e)
(g0007)
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(progn (replace g0004 g0007 :startl g0005 :endl g0006)
g0007)
(subseq g0004 g0005 g0006)

define-setf-method access-fn lambda-list [Macro)
[ {declaration}* | doc-string] { form}*

This defines how to setf a generalized-variable reference that is of the form
(access—fn...). The value of a generalized-variable reference can always be
obtained simply by evaluating it, so access-fn should be the name of a function
or a Mmacro.

The lambda-list describes the subforms of the generalized-variable reference,
as with defmacro. The result of evaluating the forms in the body must be
five values representing the setf method, as described above. Note that
define-setf-method differs from the complex form of defsetf in that while
the body is being executed the variables in lambda-list are bound to parts
of the generalized-variable reference, not to temporary variables that will be
bound to the values of such parts. In addition, define-setf-method does not
have defsetf’s restriction that access-fn must be a function or a function-like
macro; an arbitrary defmacro destructuring pattern is permitted in lambda-
list.

By definition there are no good small examples of define-setf-method
because the easy cases can all be handled by defsetf. A typical use is to
define the setf method for 1db:

;33 SETF method for the form (LDB bytespec int).
;33 Recall that the int form must itself be suitable for SETF.
(define-setf-method 1db (bytespec int)
(multiple-value-bind (temps vals stores
store-form access-form)

(get-setf-method int) ;Get SETF method for int
(let ((btemp (gensym)) ;Temp var for byte specifier
(store (gensym)) ;Temp var for byte to store
(stemp (first stores))) ;Temp var for int to store
;3 Return the SETF method for LDB as five values.
(values (cons btemp temps) ; Temporary variables

(cons bytespec vals) ;Value forms
(list store) ;Store variables



CONTROL STRUCTURE 151

‘(let ((,stemp (dpb ,store ,btemp ,access-form)))
,store-form

,store) ;Storing form
“(1db ,btemp ,access-form) ;Accessing form
))))

X3J13 voted in March 1988 (96) to specify that the &environment lambda-
list keyword may appear in the lambda-list in the same manner as for defmacro
in order to obtain the lexical environment of the call to the setf macro. The
preceding example should be modified to take advantage of this new feature.
The setf method must accept an &environment parameter, which will receive
the lexical environment of the call to setf; this environment must then be
given to get-setf-methodin order that it may correctly use any locally bound
setf method that might be applicable to the place form that appears as the
second argument to 1db in the call to setf.

;33 SETF method for the form (LDB bytespec int).
;33 Recall that the int form must itself be suitable for SETF.
;35 Note the use of an &environment parameter to receive the
;33 lexical environment of the call for use with GET-SETF-METHOD.
(define-setf-method 1db (bytespec int &environment env)
(multiple-value-bind (temps vals stores
store-form access-form)

(get-setf-method int env) ;Get SETF method for int
(let ((btemp (gensym)) ;Temp var for byte specifier
(store (gensym)) ;Temp var for byte to store
(stemp (first stores))) ;Temp var for int to store
;3 Return the SETF method for LDB as five values.
(values (cons btemp temps) ; Temporary variables
(cons bytespec vals) ;Value forms
(list store) ;Store variables

‘(let ((,stemp (dpb ,store ,btemp ,access-form)))
,store-form

,store) ;Storing form
“(1db ,btemp ,access-form) ;Accessing form
))))

X3J13 voted in March 1988 (78) to specify that the body of the expander
function defined by define-setf-method is implicitly enclosed in a block
construct whose name is the same as the name of the access-fn. Therefore
return—-from may be used to exit from the function.
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X3J13 voted in March 1989 (50) to clarify that, while defining forms nor-
mally appear at top level, it is meaningful to place them in non-top-level
contexts; define-setf-method must define the expander function within the
enclosing lexical environment, not within the global environment.

get-setf-method form [Function)

get-setf-method returns five values constituting the setf method for form.
The form must be a generalized-variable reference. get-setf-method takes
care of error-checking and macro expansion and guarantees to return exactly
one store variable.

As an example, an extremely simplified version of setf, allowing no more
and no fewer than two subforms, containing no optimization to remove unnec-
essary variables; and not allowing storing of multiple values, could be defined

by:

(defmacro setf (reference value)
(multiple-value-bind (vars vals stores store-form access-form)
(get-setf-method reference)
(declare (ignore access-form))
‘(let* ,(mapcar #’list
(append vars stores)
(append vals (list value)))
,8tore-form)))

X3J13 voted in March 1988 (96) to add an optional environment argument
to get—-setf-method. The revised definition and example are as follows.

get-setf-method form &optional env [Function)

get-setf-method returns five values constituting the setf method for form.
The form must be a generalized-variable reference. The env must be an envi-
ronment of the sort obtained through the &environment lambda-list keyword;
if env is nil or omitted, the null lexical environment is assumed. get-setf-
method takes care of error checking and macro expansion and guarantees to
return exactly one store variable.

As an example, an extremely simplified version of setf, allowing no more
and no fewer than two subforms, containing no optimization to remove unnec-
essary variables; and not allowing storing of multiple values, could be defined

by:
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(defmacro setf (reference value &environment env)
(multiple-value-bind (vars vals stores store-form access-form)
(get-setf-method reference env) ; Note use of environment
(declare (ignore access-form))
‘(let* ,(mapcar #’list
(append vars stores)
(append vals (list value)))
,8tore-form)))

get-setf-method-multiple-value form [Function)

get-setf-method-multiple-value returns five values constituting the setf
method for form. The form must be a generalized-variable reference. This
. is the same as get-setf-method except that it does not check the number
. of store variables; use this in cases that allow storing multiple values into a
generalized variable. There are no such cases in standard Common Lisp, but
this function is provided to allow for possible extensions.

X3J13 voted in March 1988 (96) to add an optional environment argument
to get—-setf-method. The revised definition is as follows.

get-setf-method-multiple-value form &optional env [Function)

get-setf-method-multiple-value returns five values constituting the setf
method for form. The form must be a generalized-variable reference. The
env must be an environment of the sort obtained through the &environment
lambda-list keyword; if env is nil or omitted, the null lexical environment is
assumed.

This is the same as get-setf-method except that it does not check the
number of store variables; use this in cases that allow storing multiple values
into a generalized variable. There are no such cases in standard Common
Lisp, but this function is provided to allow for possible extensions.

X3J13 voted in March 1988 (96) to clarify that a setf method for a func-
tional name is applicable only when the global binding of that name is lexically
visible. If such a name has a local binding introduced by flet, labels, or
macrolet, then global definitions of setf methods for that name do not apply
and are not visible. All of the standard Common Lisp macros that modify a
setf place (for example, incf, decf, pop, and rotatef) obey this convention.
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7.3. Function Invocation

The most primitive form for function invocation in Lisp of course has no
name; any list that has no other interpretation as a macro call or special form
is taken to be a function call. Other constructs are provided for less common
but nevertheless frequently useful situations.

apply function arg &rest more—args [Function)

This applies function to a list of arguments.
. The function may be a compiled-code object, or a lambda-expression, or a
. symbol; in the latter case the global functional value of that symbol is used
(but it is illegal for the symbol to be the name of a macro or special form).
X3J13 voted in June 1988 (90) to allow the function to be only of type
symbol or function; a lambda-expression is no longer acceptable as a func-
tional argument. One must use the function special form or the abbreviation
#’ before a lambda-expression that appears as an explicit argument form.
The arguments for the function consist of the last argument to apply ap-
pended to the end of a list of all the other arguments to apply but the function
itself; it is as if all the arguments to apply except the function were given to
list* to create the argument list. For example:

(setq £ ’+) (apply £ (1 2)) = 3
(setq £ #’-) (apply £ (1 2)) = -1
(apply #’max 3 5 (27 3)) = 7
(apply ‘cons *((+ 2 3) 4)) =

((+23) . 4) not (5. 4)
(apply #’+ °()) = 0

Note that if the function takes keyword arguments, the keywords as well as
the corresponding values must appear in the argument list:

(apply #’(lambda (&key a b) (list a b)) ’(:b 3)) = (nil 3)
This can be very useful in conjunction with the &allow-other-keys feature:

(defun foo (size &rest keys &key double &allow-other-keys)
(let ((v (apply #’make-array size :allow-other-keys t keys)))
(if double (concatenate (type-of v) v v) v)))

(foo 4 :initial-contents ’(a b ¢ d) :double t)
= #(abcdabcd)
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funcall fn &rest arguments [Function)
(funcall fn al a2 ... an) applies the function fn to the arguments af,
a2, ..., an. The fn may not be a special form or a macro; this would not be
meaningful.

X3J13 voted in June 1988 (90) to allow the fn to be only of type symbol
or function; a lambda-expression i1s no longer acceptable as a functional
argument. One must use the function special form or the abbreviation #’
before a lambda-expression that appears as an explicit argument form.

For example:

(cons 1 2) = (1. 2)
(setq cons (symbol-function ’+))
(funcall cons 1 2) = 3

The difference between funcall and an ordinary function call is that the
function 1s obtained by ordinary Lisp evaluation rather than by the special
interpretation of the function position that normally occurs.

Compatibility note: The Common Lisp function funcall corresponds roughly to
the Interlisp primitive applyx*.

call-arguments-limit [Constant]

The value of call-arguments-1limit is a positive integer that is the upper
exclusive bound on the number of arguments that may be passed to a function.
This bound depends on the implementation but will not be smaller than
50. (Implementors are encouraged to make this limit as large as practicable
without sacrificing performance.) The value of call-arguments-1limit must
be at least as great as that of lambda-parameters-1limit. See also multiple-
values-1limit.

7.4. Simple Sequencing

Each of the constructs in this section simply evaluates all the argument forms
in order. They differ only in what results are returned.

progn { form}* [Special form]

The progn construct takes a number of forms and evaluates them sequentially,
in order, from left to right. The values of all the forms but the last are
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discarded; whatever the last form returns is returned by the progn form.
One says that all the forms but the last are evaluated for effect, because
their execution is useful only for the side effects caused, but the last form is
executed for value.

progn is the primitive control structure construct for “compound state-
ments,” such as begin-end blocks in Algol-like languages. Many Lisp con-
structs are “implicit progn” forms: as part of their syntax each allows many
forms to be written that are to be evaluated sequentially, discarding the results
of all forms but the last and returning the results of the last form.

If the last form of the progn returns multiple values, then those multiple
values are returned by the progn form. If there are no forms for the progn,
then the result is nil. These rules generally hold for implicit progn forms as
well.

progl first { form}* [Macro)

progl is similar to progn, but it returns the value of its first form. All the
argument forms are executed sequentially; the value of the first form is saved
while all the others are executed and is then returned.

progl is most commonly used to evaluate an expression with side effects
and to return a value that must be computed before the side effects happen.
For example:

(progl (car x) (rplaca x ’foo0))

alters the car of x to be foo and returns the old car of x.

progl always returns a single value, even if the first form tries to return
multiple values. As a consequence, (progl z) and (progn z) may behave
differently if z can produce multiple values. See multiple-value-progl. A
point of style: although progl can be used to force exactly a single value to
be returned, it is conventional to use the function values for this purpose.

prog2 first second { form}* [Macro)

prog2 is similar to progl, but it returns the value of its second form. All
the argument forms are executed sequentially; the value of the second form is
saved while all the other forms are executed and is then returned. prog2 is
provided mostly for historical compatibility.

(prog2 a b ¢ ... 2z) = (progn a (progl b ¢ ... 2))
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Occasionally it is desirable to perform one side effect, then a value-producing
operation, then another side effect. In such a peculiar case, prog2 is fairly
perspicuous. For example:

(prog2 (open-a-file) (process-the-file) (close-the-file))
; value is that of process-the-file

prog2, like progi, always returns a single value, even if the second form
tries to return multiple values. As a consequence of this, (prog2 = y) and
(progn = y) may behave differently if y can produce multiple values.

7.5. Establishing New Variable Bindings

During the invocation of a function represented by a lambda-expression (or a
closure of a lambda-expression, as produced by function), new bindings are
established for the variables that are the parameters of the lambda-expression.
These bindings initially have values determined by the parameter-binding
protocol discussed in section 5.2.2.

The following constructs may also be used to establish bindings of variables,
both ordinary and functional.

let ({var | (var value)}* ) {declaration}* { form}* [Special form]

A let form can be used to execute a series of forms with specified variables
bound to specified values.
More precisely, the form

(let ((var! wvaluel)
(var?2 value?2)

(varm valuem))
declaration!
declaration?

declarationp
body1
body2

bodyn)
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first evaluates the expressions valuel, value2, and so on, in that order, saving
the resulting values. Then all of the variables varj are bound to the corre-
sponding values in parallel; each binding will be a lexical binding unless there
is a special declaration to the contrary. The expressions bodyk are then eval-
uated in order; the values of all but the last are discarded (that is, the body
of a let form is an implicit progn). The let form returns what evaluating
bodyn produces (if the body is empty, which is fairly useless, let returns nil
as its value). The bindings of the variables have lexical scope and indefinite
extent.

Instead of a list (varj valuej), one may write simply vary. In this case vary
is initialized to nil. As a matter of style, it is recommended that varj be
written only when that variable will be stored into (such as by setq) before
its first use. If it 1s important that the initial value be nil rather than some
undefined value, then it is clearer to write out (vary nil) if the initial value
is intended to mean “false,” or (wvarj ’()) if the initial value is intended to
be an empty list. Note that the code

(let (x)
(declare (integer x))
(setq x (ged y 2))
)

is incorrect; although x is indeed set before it is used, and is set to a value
of the declared type integer, nevertheless x momentarily takes on the value
nil in violation of the type declaration.

Declarations may appear at the beginning of the body of a let. See
declare.

See also destructuring-bind.

X3J13 voted in January 1989 (182) to regularize the binding formats for
do, do*, let, let*, prog, prog*, and compiler-let. The new syntactic
definition for let makes the value optional:

let ({war| (var [value] )}*) {declaration}* { form}* [Macro)
This changes let to allow a list (var) to appear, meaning the same as simply
var.

let* ({var| (var value)}*) {declaration}* {form}* [Special form]

let* is similar to 1let, but the bindings of variables are performed sequentially
rather than in parallel. This allows the expression for the value of a variable
to refer to variables previously bound in the let* form.
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More precisely, the form

(let* ((var! valuel)
(var?2 value?2)

(varm valuem))
declaration!
declaration?

declarationp

body1

body2

bodyn)
first evaluates the expression waluel, then binds the variable var! to that
value; then 1t evaluates value2 and binds var2; and so on. The expressions
bodyj are then evaluated in order; the values of all but the last are discarded
(that is, the body of a let#* form is an implicit progn). The let#* form returns
the results of evaluating bodyn (if the body is empty, which is fairly useless,
let* returns nil as its value). The bindings of the variables have lexical
scope and indefinite extent.

Instead of a list (varj valuej), one may write simply vary. In this case vary
is initialized to nil. As a matter of style, it is recommended that varj be
written only when that variable will be stored into (such as by setq) before
its first use. If it 1s important that the initial value be nil rather than some
undefined value, then it is clearer to write out (vary nil) if the initial value
is intended to mean “false,” or (wvarj ’()) if the initial value is intended to
be an empty list.

Declarations may appear at the beginning of the body of a let*. See
declare.

X3J13 voted in January 1989 (182) to regularize the binding formats for

do, do*, let, let*, prog, prog*, and compiler-let. The new syntactic
definition for let* makes the value optional:

let* ({var| (var [value] )} ) {declaration}* { form}* [Macro)

This changes 1let* to allow a list (var) to appear, meaning the same as simply
var.
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compiler-let ({wvar| (var value)}*) {form}* [Special form]

! When executed by the Lisp interpreter, compiler-let behaves exactly like
| let with all the variable bindings implicitly declared special. When the
compiler processes this form, however, no code is compiled for the bindings;
instead, the processing of the body by the compiler (including, in particular,
! the expansion of any macro calls within the body) is done with the special
i variables bound to the indicated values in the execution conterst of the com-
piler. This is primarily useful for communication among complicated macros.
‘ Declarations may not appear at the beginning of the body of a compiler-
let.

: Rationale: Because of the unorthodox handling by compiler-let of its variable
. bindings, it would be complicated and confusing to permit declarations that appar-
ently referred to the variables bound by compiler-let. Disallowing declarations
¢ eliminates the problem.

© X3J13 voted in January 1989 (182) to regularize the binding formats for
. do, do*, let, let*, prog, prog*, and compiler-let. The new syntactic
. definition for compiler-let makes the value optional:

compiler-let ({war| (var [value])}*) { form}* [Macro)

This changes compiler-1let to allow a list (var) to appear, meaning the same
as simply var.

X3J13 voted in June 1989 (25) to remove compiler-let from the language.
Many uses of compiler-let can be replaced with more portable code that
uses macrolet or symbol-macrolet.

progv symbols values { form}* [Special form]

progv is a special form that allows binding one or more dynamic variables
whose names may be determined at run time. The sequence of forms (an
implicit progn) is evaluated with the dynamic variables whose names are in
the list symbols bound to corresponding values from the list values. (If too few
values are supplied, the remaining symbols are bound and then made to have
no value; see makunbound. If too many values are supplied, the excess values
are ignored.) The results of the progv form are those of the last form. The
bindings of the dynamic variables are undone on exit from the progv form.
The lists of symbols and values are computed quantities; this is what makes
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progv different from, for example, let, where the variable names are stated
explicitly in the program text.

progv is particularly useful for writing interpreters for languages embedded
in Lisp; it provides a handle on the mechanism for binding dynamic variables.

flet ({(name lambda-list [Special form]

[ {declaration}* | doc-string] { form}*)}*)

{ form)
labels ({(name lambda-list [Special form]
[ {declaration}* | doc-string] { form}*)}*)
{ form)
macrolet ({(name varlist [Special form]
[ {declaration}* | doc-string] { form}*)}*)
{ form)

flet may be used to define locally named functions. Within the body of the
flet form, function names matching those defined by the flet refer to the
locally defined functions rather than to the global function definitions of the
same name.

Any number of functions may be simultaneously defined. Each definition
is similar in format to a defun form: first a name, then a parameter list
(which may contain &optional, &rest, or &key parameters), then optional
declarations and documentation string, and finally a body.

(flet ((safesqrt (x) (sqrt (abs x))))
;3 The safesqrt function is used in two places.
(safesqrt (apply #’+ (map ’list #’safesqrt longlist))))

The labels construct is identical in form to the flet construct. These
constructs differ in that the scope of the defined function names for flet
encompasses only the body, whereas for labels it encompasses the function
definitions themselves. That is, labels can be used to define mutually recur-
sive functions, but £let cannot. This distinction is useful. Using flet one
can locally redefine a global function name, and the new definition can refer
to the global definition; the same construction using labels would not have
that effect.

(defun integer-power (n k) ;A highly "bummed" integer
(declare (integer n)) ; exponentiation routine
(declare (type (integer 0 *) k))
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(labels ((exptO0 (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((zerop k) a)
((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a)))))
(exptl (x k a)
(declare (integer x a) (type (integer 1 *) k))
(cond ((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a))))))
(exptO n k 1)))

macrolet is similar in form to £1et but defines local macros, using the same
format used by defmacro. The names established by macrolet as names for
macros are lexically scoped.

I have observed that, while most Common Lisp users pronounce macrolet
to rhyme with “silhouette,” a small but vocal minority pronounce it to rhyme
with “Chevrolet.” A very few extremists furthermore adjust their pronuncia-
tion of flet similarly: they say “flay.” Hey, hey! Trés outré.

Macros often must be expanded at “compile time” (more generally, at a
time before the program itself is executed), and so the run-time values of
variables are not available to macros defined by macrolet.

The precise rule is that the macro-expansion functions defined by macrolet
. are defined in the global environment; lexically scoped entities that would
. ordinarily be lexically apparent are not visible within the expansion functions.

X3J13 voted in March 1989 (50) to retract the previous sentence and specify
that the macro-expansion functions created by macrolet are defined in the
lexical environment in which the macrolet form appears, not in the null lex-
ical environment. Declarations, macrolet definitions, and symbol-macrolet
definitions affect code within the expansion functions in a macrolet, but the
consequences are undefined if such code attempts to refer to any local variable
or function bindings that are visible in that lexical environment.

However, lexically scoped entities are visible within the body of the
macrolet form and are visible to the code that is the expansion of a macro
call. The following example should make this clear:
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;;; Example of scoping in macrolet.

(defun foo (x flag)
(macrolet ((fudge (2)
; ;' The parameters x and flag are not accessible
;3 at this point; a reference to £lag would be to
;; the global variable of that name.
‘(if flag
(* ,z ,z2)
,2)))
; 3 The parameters x and flag are accessible here.
(+ x
(fudge x)
(fudge (+ x 1)))))

The body of the macrolet becomes

(+ x
(if flag
(* x x)
x))
(if flag
* (+x1) (+x1))
+ x 1))

after macro expansion. The occurrences of x and flag legitimately refer to
the parameters of the function foo because those parameters are visible at
the site of the macro call which produced the expansion.

X3J13 voted in March 1988 (78) to specify that the body of each function or
expander function defined by flet, labels, or macrolet is implicitly enclosed
in a block construct whose name is the same as the name of the function.
Therefore 